The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

hemA  -  glutamyl tRNA reductase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK1198, JW1201, gtrA
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of hemA

 

High impact information on hemA

 

Chemical compound and disease context of hemA

 

Biological context of hemA

  • An Escherichia coli gene, which complements two independent hemA mutants of E. coli, has been cloned onto a multi-copy plasmid and both its strands have been sequenced [12].
  • 8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1) [4].
  • The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26 [4].
  • Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression [4].
  • Protein synthesis in an in vitro coupled transcription-translation system showed a 46 kDa protein, which corresponds to the mol. wt. of the hemA protein, as deduced from the nucleotide sequence of the gene [13].
 

Anatomical context of hemA

  • Data obtained from in vitro transcription-translation studies in a homologous R. sphaeroides cell-free system, and complementation of hemA mutations of both Escherichia coli and R. sphaeroides by either of the putative hemA clones suggested the presence of a gene encoding 5-aminolevulinate synthase on each DNA sequence [14].
  • After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure [15].
 

Associations of hemA with chemical compounds

 

Other interactions of hemA

 

Analytical, diagnostic and therapeutic context of hemA

  • Use of different types of cell culture medium resulted in a fivefold variation in hemA-lacZ expression during aerobic cell growth [22].
  • Thus, we examined the complementation test of the cloned gene from Xanthomonas with a hemA mutation of E. coli and found that the gene complemented the hemA mutation [23].
  • The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer [17].
  • GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels [17].
  • Southern analysis, restriction mapping and partial sequencing of the remaining ca. 10 kbp of the analyzed 25 kbp region have shown that this part includes the hemA, -C, -D and -B genes (MOBERG and AVISSAR 1994), which encode enzymes with function in the early part of the biosynthetic pathway of porphyrins [24].

References

  1. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Verkamp, E., Jahn, M., Jahn, D., Kumar, A.M., Söll, D. J. Biol. Chem. (1992) [Pubmed]
  2. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Schröder, I., Hederstedt, L., Kannangara, C.G., Gough, P. Biochem. J. (1992) [Pubmed]
  3. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. Verkamp, E., Chelm, B.K. J. Bacteriol. (1989) [Pubmed]
  4. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. Hungerer, C., Troup, B., Römling, U., Jahn, D. J. Bacteriol. (1995) [Pubmed]
  5. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. Moser, J., Schubert, W.D., Beier, V., Bringemeier, I., Jahn, D., Heinz, D.W. EMBO J. (2001) [Pubmed]
  6. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. Stojiljkovic, I., Hantke, K. EMBO J. (1992) [Pubmed]
  7. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. Lüer, C., Schauer, S., Möbius, K., Schulze, J., Schubert, W.D., Heinz, D.W., Jahn, D., Moser, J. J. Biol. Chem. (2005) [Pubmed]
  8. tRNA recognition by glutamyl-tRNA reductase. Randau, L., Schauer, S., Ambrogelly, A., Salazar, J.C., Moser, J., Sekine, S., Yokoyama, S., Söll, D., Jahn, D. J. Biol. Chem. (2004) [Pubmed]
  9. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. Schauer, S., Chaturvedi, S., Randau, L., Moser, J., Kitabatake, M., Lorenz, S., Verkamp, E., Schubert, W.D., Nakayashiki, T., Murai, M., Wall, K., Thomann, H.U., Heinz, D.W., Inokuchi, H., Söll, D., Jahn, D. J. Biol. Chem. (2002) [Pubmed]
  10. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. Leong, S.A., Ditta, G.S., Helinski, D.R. J. Biol. Chem. (1982) [Pubmed]
  11. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. Wang, L., Elliott, M., Elliott, T. J. Bacteriol. (1999) [Pubmed]
  12. Cloning and structure of the hem A gene of Escherichia coli K-12. Li, J.M., Russell, C.S., Cosloy, S.D. Gene (1989) [Pubmed]
  13. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Drolet, M., Péloquin, L., Echelard, Y., Cousineau, L., Sasarman, A. Mol. Gen. Genet. (1989) [Pubmed]
  14. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Tai, T.N., Moore, M.D., Kaplan, S. Gene (1988) [Pubmed]
  15. Large scale production of biologically active Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Schauer, S., Lüer, C., Moser, J. Protein Expr. Purif. (2003) [Pubmed]
  16. Characterization of a hemA/hemE mutant of E. coli and regulation of hemE. Pido, S., Tsoi, K.W., Umanoff, H., Cosloy, S.D., Russell, C.S. Cell. Mol. Biol. (Noisy-le-grand) (1994) [Pubmed]
  17. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. Srivastava, A., Beale, S.I. J. Bacteriol. (2005) [Pubmed]
  18. KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. Panek, H.R., O'Brian, M.R. J. Bacteriol. (2004) [Pubmed]
  19. Expression of genes kdsA and kdsB involved in 3-deoxy-D-manno-octulosonic acid metabolism and biosynthesis of enterobacterial lipopolysaccharide is growth phase regulated primarily at the transcriptional level in Escherichia coli K-12. Strohmaier, H., Remler, P., Renner, W., Högenauer, G. J. Bacteriol. (1995) [Pubmed]
  20. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM, and hemA of Escherichia coli. McNicholas, P.M., Javor, G., Darie, S., Gunsalus, R.P. FEMS Microbiol. Lett. (1997) [Pubmed]
  21. Cloning and characterization of genes involved in the biosynthesis of delta-aminolevulinic acid in Escherichia coli. Ikemi, M., Murakami, K., Hashimoto, M., Murooka, Y. Gene (1992) [Pubmed]
  22. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. Darie, S., Gunsalus, R.P. J. Bacteriol. (1994) [Pubmed]
  23. Cloning and characterization of the hemA gene for synthesis of delta-aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Asahara, N., Murakami, K., Korbrisate, S., Hashimoto, Y., Murooka, Y. Appl. Microbiol. Biotechnol. (1994) [Pubmed]
  24. Structure and organization of a 25 kbp region of the genome of the photosynthetic green sulfur bacterium Chlorobium vibrioforme containing Mg-chelatase encoding genes. Petersen, B.L., Møller, M.G., Stummann, B.M., Henningsen, K.W. Hereditas (1998) [Pubmed]
 
WikiGenes - Universities