The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

GR-891: a novel 5-fluorouracil acyclonucleoside prodrug for differentiation therapy in rhabdomyosarcoma cells.

Differentiation therapy provides an alternative treatment of cancer that overcomes the undesirable effects of classical chemotherapy, i.e. cytotoxicity and resistance to drugs. This new approach to cancer therapy focuses on the development of specific agents designed to selectively engage the process of terminal differentiation, leading to the elimination of tumorigenic cells and recovery of normal cell homeostasis. A series of new anti-cancer pyrimidine acyclonucleoside-like compounds were designed and synthesized by structural modifications of 5-fluorouracil, a drug which causes considerable cell toxicity and morbidity, and we evaluated their applicability for differentiation therapy in human rhabdomyosarcoma cells. We tested the pyrimidine derivative GR-891, (RS)-1-[[3-(2-hydroxyethoxy)-1-isopropoxy]propyl]-5-fluorouracil, an active drug which shows low toxicity in vivo and releases acrolein which is an aldehyde with anti-tumour activity. Both GR-891 and 5-fluorouracil caused time- and dose-dependent growth inhibition in vitro; however, GR-891 showed no cytotoxicity at low doses (22.5 micromol l(-1) and 45 micromol l(-1)) and induced terminal myogenic differentiation in RD cells (a rhabdomyosarcoma cell line) treated for 6 days. Changes in morphological features and in protein organization indicated re-entry in the pathway of muscular maturation. Moreover, GR-891 increased adhesion capability mediated by the expression of fibronectin, and did not induce overexpression of P-glycoprotein, the mdr1 gene product, implicated in multidrug resistance. New acyclonucleoside-like compounds such as GR-891 have important potential advantages over 5-fluorouracil because of their lower toxicity and their ability to induce myogenic differentiation in rhabdomyosarcoma cells. Our results suggest that this drug may be useful for differentiation therapy in this type of tumour.[1]


  1. GR-891: a novel 5-fluorouracil acyclonucleoside prodrug for differentiation therapy in rhabdomyosarcoma cells. Marchal, J.A., Prados, J., Melguizo, C., Gómez, J.A., Campos, J., Gallo, M.A., Espinosa, A., Arena, N., Aránega, A. Br. J. Cancer (1999) [Pubmed]
WikiGenes - Universities