The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase show enhanced sensitivity to the polyamine analog, N1, N11-diethylnorspermine.

We have recently generated transgenic mice in which polyamine catabolism has been activated by overexpressing the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT). These animals have now been tested for their sensitivity to the polyamine analog N1,N11-diethylnorspermine (DENSPM), which is currently undergoing Phase I clinical trial. The analog is known for its ability to potently induce SSAT. Treatment for 4 days with a daily dose (125 mg/kg) of analog caused profound changes in polyamine metabolism in the transgenic animals. Liver SSAT activity was increased by approximately 800-fold while hepatic mRNA increased only 4-fold. Putrescine pools increased while spermidine and spermine pools nearly disappeared, resulting in a compensatory increase in ornithine decarboxylase activity. Similar but less profound changes were also seen in other tissues (spleen, intestine, and skin). This treatment also resulted in a 50% mortality in the transgenic animals, with no apparent histopathological changes in major organs. Nontransgenic animals exhibited no toxicity, and tissue SSAT activity was unchanged or only moderately increased. Polyamine pools were only slightly altered. Greater analog toxicity in transgenic animals may be attributable to higher tissue levels of DENSPM facilitated by SSAT-mediated decreases in spermidine and spermine. To further confirm the enhanced sensitivity of the transgenic animals to the analog, groups of nontransgenic and transgenic animals were subjected to daily injections with DENSPM. On average, transgenic mice died approximately 3 days earlier than their nontransgenic litter-mates. The findings indicate a contributing role for SSAT in whole animal toxicity by SSAT-inducing polyamine analogs.[1]

References

 
WikiGenes - Universities