The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Detection of numerical chromosome aberrations by comparative genomic hybridization.

At least 50 per cent of all first-trimester spontaneous abortions are cytogenetically abnormal, including trisomy, monosomy X, triploidy, tetraploidy and structural chromosome anomalies. Traditionally, the detection of aneuploidy in fetal tissues is performed by tissue sampling, cell culturing, metaphase spread preparation, and conventional banding analyses. This is a tedious, laborious and time-consuming process, prone to errors due to external contamination, culture failure and selective growth of maternal cells. In the present study, we applied the CGH technique in the detection of numerical chromosome abnormalities in 50 placentae of spontaneously aborted fetuses. CGH detected six different types of trisomy (trisomy 8, 15, 16, 18, 22 and 21), one double trisomy (involving chromosomes 14 and 21), and one monosomy X. Overall, nine samples (18 per cent) harboured numerical chromosome aberrations. Aneuploidy was detected in eight samples by CGH and in six samples by conventional cytogenetic analysis. In only one case, CGH failed to detect a mosaic for trisomy revealed by conventional cytogenetic analysis. The successful application of the CGH technique to the detection of aneuploidy in spontaneous abortions, demonstrates the utility of using this technique to screen prenatally for numerical chromosome abnormalities. Our preliminary data support the application of CGH to the clinical genetics setting, at least as a complementary tool to the traditional cytogenetic techniques.[1]

References

  1. Detection of numerical chromosome aberrations by comparative genomic hybridization. Daniely, M., Barkai, G., Goldman, B., Aviram-Goldring, A. Prenat. Diagn. (1999) [Pubmed]
 
WikiGenes - Universities