The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Brain injury after cerebral arterial air embolism in the rabbit as determined by triphenyltetrazolium staining.

BACKGROUND: Microscopic cerebral arterial air embolism (CAAE) occurs commonly during cardiac surgery and causes acute and chronic nonfocal neurologic dysfunction. Nevertheless, most neuroimaging studies do not detect brain injury after cardiac surgery. Using a rabbit model, the authors hypothesized they could detect and quantitate severe brain injury and infarction 24 h after microscopic CAAE using the vital stain triphenyltetrazolium chloride. METHODS: Experiments were conducted in methohexital anesthetized New Zealand white rabbits. Surgical shams (n = 5) underwent surgery but had no neurologic insult. Positive controls (n = 3) received 200 microl/kg of intracarotid air. Other animals were randomized to receive either 50 microl/kg intracarotid air, which produces microscopic CAAE (n = 18), or 300 microl intracarotid saline (control, n = 18). Outcomes included somatosensory evoked potential amplitude at 90 min, neurologic impairment score at 4 and 24 h (0 [normal] to 99 [coma]), and percentage of nonstaining brain at 24 h using color-discrimination image analysis. Severely injured or infarcted brain does not stain with triphenyltetrazolium chloride. RESULTS: Surgical shams had little neurologic impairment and a small amount of nonstaining brain at 24 h (5.2 +/- 2.4%; mean +/- SD). Positive controls had profound neurologic impairment and large amounts of nonstaining brain (40-97%). Ninety-minute somatosensory evoked potential amplitude was less in animals receiving 50 microl/kg air versus saline: 38 +/- 28% versus 102 +/- 32%, respectively, P < 1 x 10(-7). Neurologic impairment scores were greater in animals receiving 50 microl/kg air versus saline: at 4 h, 43 +/- 16 versus 23 +/- 9, P < 1 x 10(-7); at 24 h, 24 +/- 12 versus 15 +/- 8, P = 0.013. Nevertheless, there was no difference between 50 microl/kg air and saline in nonstaining brain: 5.5 +/- 2.9% versus 6.8 +/- 5.4%, P = 0.83. CONCLUSIONS: Neurologic injury after CAAE is dose-dependent. Although microscopic CAAE causes somatosensory evoked potential abnormalities and neurologic dysfunction, severe cerebral injury or infarction is not present at 24 h. The author's findings are consistent with clinical imaging studies that suggest microscopic CAAE causes neurologic dysfunction even though overt infarction is absent.[1]


  1. Brain injury after cerebral arterial air embolism in the rabbit as determined by triphenyltetrazolium staining. Hindman, B.J., Dexter, F., Subieta, A., Smith, T., Cutkomp, J. Anesthesiology (1999) [Pubmed]
WikiGenes - Universities