The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Histidine-193 of rat glucosylceramide synthase resides in a UDP-glucose- and inhibitor (D-threo-1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol)-binding region: a biochemical and mutational study.

Glucosylceramide synthase (GCS) catalyses the transfer of glucose from UDP-glucose (UDP-Glc) to ceramide to form glucosylceramide, the common precursor of most higher-order glycosphingolipids. Inhibition of GCS activity has been proposed as a possible target of chemotherapeutic agents for a number of diseases, including cancer. Design of new GCS inhibitors with desirable pharmaceutical properties is hampered by lack of knowledge of the secondary structure or catalytic mechanism of the GCS protein. Thus we cloned the rat homologue of GCS to begin studies to identify its catalytic regions. The histidine-modifying agent diethyl pyrocarbonate (DEPC) inhibited recombinant rat GCS expressed in bacteria; this inhibition was rapidly reversible by hydroxylamine and could be diminished by preincubation of GCS with UDP-Glc. These data suggest that DEPC acts on histidine residues within or near the UDP-Glc-binding site of GCS. Mutant proteins were expressed in which the eight histidine residues in GCS were individually replaced by other amino acids. H193A (His193-->Ala) and H193N (His193-->Asn) mutants were unaffected by 0.1 mM DEPC, a concentration that inhibited other histidine mutants and the wild-type enzyme by at least 60%. These results indicate that His193 is the primary target of DEPC and is at, or near, the UDP-Glc-binding site of GCS. His193 mutants were also insensitive to the GCS inhibitor d-threo-1-phenyl-2- decanoylamino-3-morpholinopropan-1-ol, at concentrations which inhibited the wild-type enzyme by >80%. These results have significance for both an understanding of the GCS active site and also for the possible design of new and specific inhibitors of GCS.[1]

References

 
WikiGenes - Universities