The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Unique evolution of neurohypophysial hormones in cartilaginous fishes: possible implications for urea-based osmoregulation.

Most bony vertebrate species display a great evolutionary stability of their two neurohypophysial hormones, so that two molecular lineages, isotocin-mesotocin-oxytocin and vasotocin-vasopressin, have been traced from bony fishes to mammals. Chondrichthyes, in contrast, show a striking diversity of their oxytocin-like hormones, yet show a substantial decrease in vasotocin stored in neurohypophysis when compared to nonmammalian bony vertebrates. In the rays, glumitocin ([Ser(4),Gln(8)]-oxytocin) has been identified. In the spiny dogfish, aspargtocin ([Asn4]-oxytocin) and valitocin ([Val(8)]-oxytocin) have been characterized whereas in the spotted dogfish, asvatocin ([Asn(4),Val(8)]-oxytocin) and phasvatocin ([Phe(3),Asn(4),Val(8)]-oxytocin) have been found. Finally, in the holocephalian Pacific ratfish, oxytocin, the typical peptide of placental mammals, has been discovered. The duplication of the oxytocin-like hormone gene found in dogfishes has been observed only in some Australian and American marsupials. Cartilaginous fishes have developed an original urea-based osmoregulation involving a glutamine-dependent urea synthesis and blood urea retention through renal urea transporters. Furthermore, marine species use a rectal salt gland for sodium chloride excretion. Although vasopressin, in mammals, and vasotocin, in nonmammalian tetrapods, are clearly implied in water and salt homeostasis, the hormones involved in the blood osmotic pressure regulation of elasmobranchs are still largely unknown. It is suggested that the great diversity of oxytocin-like hormones in elasmobranchs expresses a release from an evolutionary receptor-binding constraint, so that amino-acid substitutions reflect neutral evolution. In contrast, the preservation of vasotocin suggests a selective pressure, which may be related to the regulation of renal urea transporter-recruitment mechanisms, as it has been shown for vasopressin in mammals. J. Exp. Zool. 284:475-484, 1999.[1]

References

 
WikiGenes - Universities