The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Salt Gland

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Salt Gland

  • Since the initial inositol phosphate production upon receptor activation with carbachol and the resulting calcium signals were not affected by pertussis toxin-pretreatment of salt gland cells, we conclude that muscarinic receptors are coupled to phospholipase C by a Gq-type G protein [1].
  • Adaptive hypertrophy of the nasal salt glands was not steroid-dependent since there was no measurable decrease in the weight of the glands during a 2-week period following adrenalectomy [2].
 

High impact information on Salt Gland

 

Biological context of Salt Gland

 

Anatomical context of Salt Gland

 

Associations of Salt Gland with chemical compounds

  • The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport [4].
  • In this study, these receptors were characterized and quantitated in homogenates of salt gland from domestic ducks adapted to conditions of low (freshwater, FW) and high (saltwater, SW) salt stress using the cholinergic antagonist [3H]-quinuclidinyl benzilate (QNB) [5].
  • Na+,K(+)-ATPase from the salt gland of Squalus acanthias was solubilized in a polyoxyethylene ether detergent, octa(ethylene glycol) dodecyl monoether [15].
  • The results demonstrate both B creatine kinase and mitochondrial creatine kinase proteins are present in the rectal gland, an isoform composition which is the same as in the mammalian kidney [16].
  • Effects of lipophilic ions, tetraphenylphosphonium (TPP+) and tetraphenylboron (TPB-), on interactions of Na+ and K+ with Na,K-ATPase were studied with membrane-bound enzyme from bovine brain, pig kidney, and shark rectal gland [17].
 

Gene context of Salt Gland

 

Analytical, diagnostic and therapeutic context of Salt Gland

References

  1. A Gq-type G protein couples muscarinic receptors to inositol phosphate and calcium signaling in exocrine cells from the avian salt gland. Hildebrandt, J.P., Shuttleworth, T.J. J. Membr. Biol. (1993) [Pubmed]
  2. Adrenalectomy fails to block salt gland secretion in Pekin ducks (Anas platyrhynchos) adapted to 0.9% saline drinking water. Butler, D.G. Gen. Comp. Endocrinol. (1987) [Pubmed]
  3. Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. Lehrich, R.W., Aller, S.G., Webster, P., Marino, C.R., Forrest, J.N. J. Clin. Invest. (1998) [Pubmed]
  4. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland. Kelley, G.G., Aassar, O.S., Forrest, J.N. J. Clin. Invest. (1991) [Pubmed]
  5. Characterization of muscarinic acetylcholine receptors in the avian salt gland. Hootman, S.R., Ernst, S.A. J. Cell Biol. (1981) [Pubmed]
  6. Carbachol-stimulated phosphorylation of the Na-K-Cl cotransporter of avian salt gland. Requirement for Ca2+ and PKC Activation. Torchia, J., Yi, Q., Sen, A.K. J. Biol. Chem. (1994) [Pubmed]
  7. Sodium- and potassium-activated adenosine triphosphatase of the nasal salt gland of the duck (Anas platyrhynchos). Purification, characterization, and NH2-terminal amino acid sequence of the phosphorylating polypeptide. Hopkins, B.E., Wagner, H., smith, T.W. J. Biol. Chem. (1976) [Pubmed]
  8. Ouabain binding during plasma membrane biogenesis in duck salt gland. Hossler, F.E., Sarras, M.P., Barrnett, R.J. J. Cell. Sci. (1978) [Pubmed]
  9. The control of adaptive hypertrophy in the salt glands of geese and ducks. Hanwell, A., Peaker, M. J. Physiol. (Lond.) (1975) [Pubmed]
  10. Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland of Squalus acanthias. Epstein, F.H., Stoff, J.S., Silva, P. J. Exp. Biol. (1983) [Pubmed]
  11. Basolateral plasma membrane localiztion of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. Ernst, S.A., Mills, J.W. J. Cell Biol. (1977) [Pubmed]
  12. Molecular properties of purified (sodium + potassium)-activated adenosine triphosphatases and their subunits from the rectal gland of Squalus acanthias and the electric organ of Electrophorus electricus. Perrone, J.R., Hackney, J.F., Dixon, J.F., Hokin, L.E. J. Biol. Chem. (1975) [Pubmed]
  13. Immunoreactivity and ouabain-dependent phosphorylation of (Na+ + K+)-adenosinetriphosphatase catalytic subunit doublets. Siegel, G.J., Desmond, T., Ernst, S.A. J. Biol. Chem. (1986) [Pubmed]
  14. Selective permeability barrier to urea in shark rectal gland. Zeidel, J.D., Mathai, J.C., Campbell, J.D., Ruiz, W.G., Apodaca, G.L., Riordan, J., Zeidel, M.L. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  15. Local translational diffusion rates of membranous Na+,K(+)-ATPase measured by saturation transfer ESR spectroscopy. Esmann, M., Marsh, D. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  16. Purification and localization of brain-type creatine kinase in sodium chloride transporting epithelia of the spiny dogfish, Squalus acanthias. Friedman, D.L., Roberts, R. J. Biol. Chem. (1992) [Pubmed]
  17. Influence of intramembrane electric charge on Na,K-ATPase. Klodos, I., Fedosova, N.U., Plesner, L. J. Biol. Chem. (1995) [Pubmed]
  18. Neuropeptide Y inhibits chloride secretion in the shark rectal gland. Silva, P., Epstein, F.H., Karnaky, K.J., Reichlin, S., Forrest, J.N. Am. J. Physiol. (1993) [Pubmed]
  19. The xenobiotic transporter, MRP2, in epithelia from insects, sharks, and the human breast: implications for health and disease. Karnaky, K.J., Hazen-Martin, D., Miller, D.S. J. Exp. Zoolog. Part A Comp. Exp. Biol. (2003) [Pubmed]
  20. Identification of a phospholemman-like protein from shark rectal glands. Evidence for indirect regulation of Na,K-ATPase by protein kinase c via a novel member of the FXYDY family. Mahmmoud, Y.A., Vorum, H., Cornelius, F. J. Biol. Chem. (2000) [Pubmed]
  21. Regulation of MRP2-mediated transport in shark rectal salt gland tubules. Miller, D.S., Masereeuw, R., Karnaky, K.J. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2002) [Pubmed]
  22. The Na-K-Cl cotransporter of avian salt gland. Phosphorylation in response to cAMP-dependent and calcium-dependent secretogogues. Torchia, J., Lytle, C., Pon, D.J., Forbush, B., Sen, A.K. J. Biol. Chem. (1992) [Pubmed]
  23. Circulatory and osmoregulatory effects of angiotensin II perfusion of the third ventricle in a bird with salt glands. Gerstberger, R., Gray, D.A., Simon, E. J. Physiol. (Lond.) (1984) [Pubmed]
  24. Mechanism of the rate-determining step of the Na(+),K(+)-ATPase pump cycle. Humphrey, P.A., Lüpfert, C., Apell, H.J., Cornelius, F., Clarke, R.J. Biochemistry (2002) [Pubmed]
  25. Vasoactive intestinal peptide stimulates a cAMP-mediated Cl- current in avian salt gland cells. Martin, S.C., Shuttleworth, T.J. Regul. Pept. (1994) [Pubmed]
  26. Control of rectal gland secretion in the dogfish (Squalus acanthias): steps in the sequence of activation. Erlij, D., Rubio, R. J. Exp. Biol. (1986) [Pubmed]
 
WikiGenes - Universities