The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cellular distribution of iron in the brain of the Belgrade rat.

In this study, we investigated the cellular distribution of iron in the brain of Belgrade rats. These rats have a mutation in Divalent Metal Transporter 1, which has been implicated in iron transport from endosomes. The Belgrade rats have iron-positive pyramidal neurons, but these are fewer in number and less intensely stained than in controls. In the white matter, iron is normally present in patches of intensely iron-stained oligodendrocytes and myelin, but there is dramatically less iron staining in the Belgrade rat. Those oligodendrocytes that stained for iron did so strongly and were associated with blood vessels. Astrocytic iron staining was seen in the cerebral cortex for both normal rats and Belgrade rats, but the iron-stained astrocytes were less numerous in the mutants. Iron staining in tanycytes, modified astrocytes coursing from the third ventricle to the hypothalamus, was not affected in the Belgrade rat, but was affected by diet. The results of this study indicate that Divalent Metal Transporter 1 is important to iron transport in the brain. Iron is essential in the brain for basic metabolic processes such as heme formation, neurotransmitter production and ATP synthesis. Excess brain iron is associated with a number of common neurodegenerative diseases. Consequently, elucidating the mechanisms of brain iron delivery is critical for understanding the role of iron in pathological conditions.[1]


  1. Cellular distribution of iron in the brain of the Belgrade rat. Burdo, J.R., Martin, J., Menzies, S.L., Dolan, K.G., Romano, M.A., Fletcher, R.J., Garrick, M.D., Garrick, L.M., Connor, J.R. Neuroscience (1999) [Pubmed]
WikiGenes - Universities