The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function?

The zinc-containing D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase VanX has been detected in both Gram-positive and Gram-negative bacteria, where it appears to have adapted to at least three distinct physiological roles. In pathogenic vancomycin-resistant enterococci, vanX is part of a five-gene cluster that is switched on to reprogram cell-wall biosynthesis to produce peptidoglycan chain precursors terminating in D-alanyl-D-lactate (D-Ala-D-lactate) rather than D-Ala-D-Ala. The modified peptidoglycan exhibits a 1, 000-fold decrease in affinity for vancomycin, accounting for the observed phenotypic resistance. In the glycopeptide antibiotic producers Streptomyces toyocaensis and Amylocatopsis orientalis, a vanHAX operon may have coevolved with antibiotic biosynthesis genes to provide immunity by reprogramming cell-wall termini to D-Ala-D-lactate as antibiotic biosynthesis is initiated. In the Gram-negative bacterium Escherichia coli, which is never challenged by the glycopeptide antibiotics because they cannot penetrate the outer membrane permeability barrier, the vanX homologue (ddpX) is cotranscribed with a putative dipeptide transport system (ddpABCDF) in stationary phase by the transcription factor RpoS (sigma(s)). The combined action of DdpX and the permease would permit hydrolysis of D-Ala-D-Ala transported back into the cytoplasm from the periplasm as cell-wall crosslinks are refashioned. The D-Ala product could then be oxidized as an energy source for cell survival under starvation conditions.[1]


  1. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Lessard, I.A., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
WikiGenes - Universities