The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Periplasm

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Periplasm

 

High impact information on Periplasm

  • The accumulation of misfolded porins in the periplasm of bacteria triggers a proteolytic cascade, initiated by activation of DegS, a member of the family of HtrA proteases [6].
  • DegS senses misfolded protein in the periplasm, undergoes autoactivation, and cleaves the antisigma factor RseA [7].
  • Variants of lambda repressor and cytochrome b562 translated from messenger RNAs without stop codons were modified by carboxyl terminal addition of an ssrA-encoded peptide tag and subsequently degraded by carboxyl terminal-specific proteases present in both the cytoplasm and periplasm of Escherichia coli [8].
  • Leader peptidase spans the Escherichia coli plasma membrane with its amino-terminal domain facing the cytoplasm and its carboxyl terminus facing the periplasm [9].
  • UreI-dependent NH(3) generation by intrabacterial urease buffers the bacterial periplasm, enabling acid resistance at the low urea concentrations found in gastric juice [10].
 

Chemical compound and disease context of Periplasm

 

Biological context of Periplasm

 

Anatomical context of Periplasm

 

Associations of Periplasm with chemical compounds

  • We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants [26].
  • Protein disulfide bond formation in the bacterial periplasm is catalyzed by the Dsb enzymes in conjunction with the respiratory quinone components [27].
  • A pseudorevertant of the mutant contained proteolytically processed, active ribose-binding protein in the periplasm [28].
  • By transposon and deletion mutagenesis, two separate steps in transport of the polysaccharide from the cytoplasm to the periplasm and further to the cell surface became evident [29].
  • (iii) An active invertase complex is assembled in the ER, is targeted to the yeast periplasm, and is biologically functional, as judged by its ability to facilitate growth on sucrose as a single carbon source [30].
 

Gene context of Periplasm

  • Suppression by ompL null mutations required DsbB, leading us to propose a hypothesis that DsbB oxidizes yet unidentified, low-molecular-weight redox agents in the periplasm [18].
  • Membrane fractionation and protease protection experiments indicate that FUS1 spans the plasma membrane, with its glycosylated amino terminus projecting into the periplasmic space [31].
  • Plb3p activity in a plb1 plb2 mutant background was observed in periplasmic space extracts [32].
  • To investigate this possibility, we substituted all 23 basic and acidic residues of the N-terminal domain of TF with Ala or Asn and expressed the mutants as soluble TF(2-219) in a novel expression/purification vector system in the periplasmic space of bacteria [33].
  • Upon overexpression of PLB2 in a plb1 plb3 mutant background, phospholipase B activity was detectable in the plasma membrane, periplasmic space extracts and the culture supernatant [32].
 

Analytical, diagnostic and therapeutic context of Periplasm

  • Indeed, replacing either one of the two Cys residues in Spa32 with Ser by site-directed mutagenesis reduced its capacity to release Ipa proteins into the external medium and led to the accumulation of Spa32 protein in the periplasm [34].
  • To perform these functions it must interact with two sets of cytoplasmic membrane proteins, the MalFGK transport complex and the chemotactic signal transducer Tar. MBP is present at high concentrations, on the order of 1 mM, in the periplasm of maltose-induced or malTc constitutive cells [35].
  • Subcellular fractionation showed that the full-length form of rS1 was membrane associated, while proteolytic fragments of rS1 were present in the periplasm. rS1 was extracted from outer membrane preparations with 8 M urea and purified by gel filtration chromatography [36].
  • Cell fractionation and alkaline phosphatase fusion experiments established that YaeL has four transmembrane segments with both termini orienting toward the periplasm [37].
  • By Western blotting and phoA fusion analyses, the MucB antagonist of sigma22 was found to localize to the periplasm of the cell [38].

References

  1. Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Kendall, D.A., Bock, S.C., Kaiser, E.T. Nature (1986) [Pubmed]
  2. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. Ostermeier, M., De Sutter, K., Georgiou, G. J. Biol. Chem. (1996) [Pubmed]
  3. Distinct domains of an oligotopic membrane protein are Sec-dependent and Sec-independent for membrane insertion. Lee, J.I., Kuhn, A., Dalbey, R.E. J. Biol. Chem. (1992) [Pubmed]
  4. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin. Wang, Y., Bjes, E.S., Esser, A.F. J. Biol. Chem. (2000) [Pubmed]
  5. Formaldehyde and photoactivatable cross-linking of the periplasmic binding protein to a membrane component of the histidine transport system of Salmonella typhimurium. Prossnitz, E., Nikaido, K., Ulbrich, S.J., Ames, G.F. J. Biol. Chem. (1988) [Pubmed]
  6. A PDZ switch for a cellular stress response. Schlieker, C., Mogk, A., Bukau, B. Cell (2004) [Pubmed]
  7. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M., Clausen, T. Cell (2004) [Pubmed]
  8. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Keiler, K.C., Waller, P.R., Sauer, R.T. Science (1996) [Pubmed]
  9. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Dalbey, R.E., Wickner, W. Science (1987) [Pubmed]
  10. Local pH elevation mediated by the intrabacterial urease of Helicobacter pylori cocultured with gastric cells. Athmann, C., Zeng, N., Kang, T., Marcus, E.A., Scott, D.R., Rektorschek, M., Buhmann, A., Melchers, K., Sachs, G. J. Clin. Invest. (2000) [Pubmed]
  11. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli. Betton, J.M., Sassoon, N., Hofnung, M., Laurent, M. J. Biol. Chem. (1998) [Pubmed]
  12. Fe3+ coordination and redox properties of a bacterial transferrin. Taboy, C.H., Vaughan, K.G., Mietzner, T.A., Aisen, P., Crumbliss, A.L. J. Biol. Chem. (2001) [Pubmed]
  13. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. Inaba, K., Takahashi, Y.H., Fujieda, N., Kano, K., Miyoshi, H., Ito, K. J. Biol. Chem. (2004) [Pubmed]
  14. Export of a heterologous cytochrome P450 (CYP105D1) in Escherichia coli is associated with periplasmic accumulation of uroporphyrin. Akhtar, M.K., Kaderbhai, N.N., Hopper, D.J., Kelly, S.L., Kaderbhai, M.A. J. Biol. Chem. (2003) [Pubmed]
  15. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. Ilbert, M., Méjean, V., Giudici-Orticoni, M.T., Samama, J.P., Iobbi-Nivol, C. J. Biol. Chem. (2003) [Pubmed]
  16. The gastric biology of Helicobacter pylori. Sachs, G., Weeks, D.L., Melchers, K., Scott, D.R. Annu. Rev. Physiol. (2003) [Pubmed]
  17. Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase. Wendt, K.S., Schall, I., Huber, R., Buckel, W., Jacob, U. EMBO J. (2003) [Pubmed]
  18. Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin. Dartigalongue, C., Nikaido, H., Raina, S. EMBO J. (2000) [Pubmed]
  19. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Heras, B., Edeling, M.A., Schirra, H.J., Raina, S., Martin, J.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Lessard, I.A., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  21. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. Koronakis, V., Hughes, C., Koronakis, E. EMBO J. (1991) [Pubmed]
  22. Regulated secretion of a serine protease that activates an extracellular matrix-degrading metalloprotease during fertilization in Chlamydomonas. Snell, W.J., Eskue, W.A., Buchanan, M.J. J. Cell Biol. (1989) [Pubmed]
  23. RseB binding to the periplasmic domain of RseA modulates the RseA:sigmaE interaction in the cytoplasm and the availability of sigmaE.RNA polymerase. Collinet, B., Yuzawa, H., Chen, T., Herrera, C., Missiakas, D. J. Biol. Chem. (2000) [Pubmed]
  24. Sun2 is a novel mammalian inner nuclear membrane protein. Hodzic, D.M., Yeater, D.B., Bengtsson, L., Otto, H., Stahl, P.D. J. Biol. Chem. (2004) [Pubmed]
  25. Ligand binding domain of granulocyte colony-stimulating factor receptor. Hiraoka, O., Anaguchi, H., Yamasaki, K., Fukunaga, R., Nagata, S., Ota, Y. J. Biol. Chem. (1994) [Pubmed]
  26. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. Derman, A.I., Puziss, J.W., Bassford, P.J., Beckwith, J. EMBO J. (1993) [Pubmed]
  27. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. Inaba, K., Ito, K. EMBO J. (2002) [Pubmed]
  28. A signal sequence mutant defective in export of ribose-binding protein and a corresponding pseudorevertant isolated without imposed selection. Iida, A., Groarke, J.M., Park, S., Thom, J., Zabicky, J.H., Hazelbauer, G.L., Randall, L.L. EMBO J. (1985) [Pubmed]
  29. Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Frosch, M., Weisgerber, C., Meyer, T.F. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  30. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo. Schonberger, O., Knox, C., Bibi, E., Pines, O. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. The yeast cell fusion protein FUS1 is O-glycosylated and spans the plasma membrane. Trueheart, J., Fink, G.R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  32. Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae. Merkel, O., Fido, M., Mayr, J.A., Prüger, H., Raab, F., Zandonella, G., Kohlwein, S.D., Paltauf, F. J. Biol. Chem. (1999) [Pubmed]
  33. The cofactor function of the N-terminal domain of tissue factor. Kittur, F.S., Manithody, C., Morrissey, J.H., Rezaie, A.R. J. Biol. Chem. (2004) [Pubmed]
  34. Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Watarai, M., Tobe, T., Yoshikawa, M., Sasakawa, C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  35. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. Manson, M.D., Boos, W., Bassford, P.J., Rasmussen, B.A. J. Biol. Chem. (1985) [Pubmed]
  36. Biochemical and biological activities of recombinant S1 subunit of pertussis toxin. Barbieri, J.T., Pizza, M., Cortina, G., Rappuoli, R. Infect. Immun. (1990) [Pubmed]
  37. Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli. Kanehara, K., Akiyama, Y., Ito, K. Gene (2001) [Pubmed]
  38. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). Mathee, K., McPherson, C.J., Ohman, D.E. J. Bacteriol. (1997) [Pubmed]
 
WikiGenes - Universities