The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Peptide-mediated glial responses to leydig neuron activity in the leech central nervous system.

Neuronal activity may lead to a variety of responses in neighbouring glial cells; in general, an ensemble of neurons needs to be active to evoke a K+- and/or neurotransmitter-induced glial membrane potential change. We have now detected a signal transfer from a single neuromodulatory Leydig neuron to the giant neuropil glial cells in the central nervous system of the leech Hirudo medicinalis. Activation of a Leydig neuron, two of which are located in each segmental ganglion, elicits a hyperpolarization in the giant neuropil glial cells. This hyperpolarization could be mimicked by bath application of the peptide myomodulin A (1 nM-1.0 microM). Myomodulin-like immunoreactivity has recently been found to be present in a set of leech neurons, including Leydig neurons (Keating & Sahley 1996, J. Neurobiol., 30, 374-384). The glial responses to Leydig neuron stimulation persisted in a high-divalent cation saline, when polysynaptic pathways are suppressed, indicating that the effects on the glial cell were direct. The glial responses to myomodulin A application persisted in high-Mg2+/low-Ca2+ saline, when chemical synaptic transmission is suppressed, indicating a direct effect of myomodulin A on the glial membrane. The glial hyperpolarization evoked by myomodulin A was dose dependent (EC50 = 50 nM) and accompanied by a membrane conductance increase of approximately 25%. Ion substitution experiments indicated that myomodulin A triggered a Ca2+-independent K+ conductance. Thus, our results suggest, for the first time, direct signal transmission from an identified modulatory neuron to an identified glial cell using a myomodulin-like peptide.[1]

References

 
WikiGenes - Universities