The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Hirudo medicinalis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hirudo medicinalis

  • Enhancement of recombinant tissue-type plasminogen activator thrombolysis with a selective factor Xa inhibitor derived from the leech Hirudo medicinalis: comparison with heparin and hirudin in a rabbit thrombosis model [1].
  • In order to investigate the principles of protein thermostability, the crystal structure of thermitase from Thermoactinomyces vulgaris, a thermostable member of the subtilisin family of serine proteases, has been determined in a complex with eglin c. Eglin c is a serine protease inhibitor from the leech Hirudo medicinalis [2].

High impact information on Hirudo medicinalis


Biological context of Hirudo medicinalis


Anatomical context of Hirudo medicinalis


Associations of Hirudo medicinalis with chemical compounds

  • Retzius cells and the cutaneous baroreceptive P-cells of adult medicinal leeches (Hirudo medicinalis) respond to 5-HT by Cl- as well as by monovalent cation conductances (Drapeau et al., 1989) [18].
  • A single injection of 100 micrograms reserpine into the crop of the medicinal leech, Hirudo medicinalis, reduced CNS serotonin and dopamine levels to less than 1% of control values within 3 d [19].
  • For instance, the amide NH groups of most residues in the binding loop of eglin c, a potent serine proteinase inhibitor from the leech Hirudo medicinalis, are H-bonded to the carbonyl groups of residues in the target enzyme molecules such as chymotrypsin, elastase and subtilisins [20].
  • In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors [21].
  • Activation of AMPA/kainate receptors but not acetylcholine receptors causes Mg2+ influx into Retzius neurones of the leech Hirudo medicinalis [21].

Gene context of Hirudo medicinalis


Analytical, diagnostic and therapeutic context of Hirudo medicinalis


  1. Enhancement of recombinant tissue-type plasminogen activator thrombolysis with a selective factor Xa inhibitor derived from the leech Hirudo medicinalis: comparison with heparin and hirudin in a rabbit thrombosis model. Kornowski, R., Eldor, A., Werber, M.M., Ezov, N., Zwang, E., Nimrod, A., Chernine, A., Finkelstein, A., Panet, A., Laniado, S., Keren, G. Coron. Artery Dis. (1996) [Pubmed]
  2. Crystallographic refinement by incorporation of molecular dynamics: thermostable serine protease thermitase complexed with eglin c. Gros, P., Fujinaga, M., Dijkstra, B.W., Kalk, K.H., Hol, W.G. Acta Crystallogr., B (1989) [Pubmed]
  3. Characterization of a homologue of bithorax-complex genes in the leech Hirudo medicinalis. Wysocka-Diller, J.W., Aisemberg, G.O., Baumgarten, M., Levine, M., Macagno, E.R. Nature (1989) [Pubmed]
  4. Cable properties of arborized Retzius cells of the leech in culture as probed by a voltage-sensitive dye. Fromherz, P., Vetter, T. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  5. Calin from Hirudo medicinalis, an inhibitor of von Willebrand factor binding to collagen under static and flow conditions. Harsfalvi, J., Stassen, J.M., Hoylaerts, M.F., Van Houtte, E., Sawyer, R.T., Vermylen, J., Deckmyn, H. Blood (1995) [Pubmed]
  6. The leech receptor protein tyrosine phosphatase HmLAR2 is concentrated in growth cones and is involved in process outgrowth. Gershon, T.R., Baker, M.W., Nitabach, M., Macagno, E.R. Development (1998) [Pubmed]
  7. Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A., Jahn, R. J. Neurosci. (1997) [Pubmed]
  8. Repetitive treatment with serotonin modifies protein synthesis and protein phosphorylation in the central nervous system of Hirudo medicinalis. Garcia-Gil, M., Bottai, D., Romano, A., Fineschi, L., Bini, L., Pallini, V., Brunelli, M. Electrophoresis (1995) [Pubmed]
  9. Cellular expression of a leech netrin suggests roles in the formation of longitudinal nerve tracts and in regional innervation of peripheral targets. Gan, W.B., Wong, V.Y., Phillips, A., Ma, C., Gershon, T.R., Macagno, E.R. J. Neurobiol. (1999) [Pubmed]
  10. Serotonin differentially modulates two K+ currents in the Retzius cell of the leech. Acosta-Urquidi, J., Sahley, C.L., Kleinhaus, A.L. J. Exp. Biol. (1989) [Pubmed]
  11. Cell- and tissue-specific expression of putative protein kinase mRNAs in the embryonic leech, Hirudo medicinalis. Nitabach, M.N., Macagno, E.R. Cell Tissue Res. (1995) [Pubmed]
  12. Lox6, a leech Dfd ortholog, is expressed in the central nervous system and in peripheral sensory structures. Wong, V.Y., Macagno, E.R. Dev. Genes Evol. (1998) [Pubmed]
  13. Fura-2 signals evoked by kainate in leech glial cells in the presence of different divalent cations. Munsch, T., Nett, W., Deitmer, J.W. Glia (1994) [Pubmed]
  14. Distribution and developmental expression of octopamine-immunoreactive neurons in the central nervous system of the leech. Gilchrist, L.S., Klukas, K.A., Jellies, J., Rapus, J., Eckert, M., Mesce, K.A. J. Comp. Neurol. (1995) [Pubmed]
  15. Ingestive sensory inputs excite serotonin effector neurones and promote serotonin depletion from the leech central nervous system and periphery. Groome, J.R., Vaughan, D.K., Lent, C.M. J. Exp. Biol. (1995) [Pubmed]
  16. Membrane responses of the leech giant glial cell to the peptide transmitter myomodulin. Britz, F.C., Deitmer, J.W. Peptides (2002) [Pubmed]
  17. Mechanism of action of triethyltin on identified leech neurons. Kyriakides, M.A., Sawyer, R.T., Allen, S.L., Simpson, M.G. Toxicol. Lett. (1990) [Pubmed]
  18. Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis). Lessmann, V., Dietzel, I.D. J. Neurosci. (1991) [Pubmed]
  19. Modification of leech behavior patterns by reserpine-induced amine depletion. O'Gara, B.A., Chae, H., Latham, L.B., Friesen, W.O. J. Neurosci. (1991) [Pubmed]
  20. Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes. Lu, W., Randal, M., Kossiakoff, A., Kent, S.B. Chem. Biol. (1999) [Pubmed]
  21. Activation of AMPA/kainate receptors but not acetylcholine receptors causes Mg2+ influx into Retzius neurones of the leech Hirudo medicinalis. Muller, A., Gunzel, D., Schlue, W.R. J. Gen. Physiol. (2003) [Pubmed]
  22. Vascular endothelial growth factor is involved in neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea). Tettamanti, G., Grimaldi, A., Valvassori, R., Rinaldi, L., de Eguileor, M. Cytokine (2003) [Pubmed]
  23. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. McPartland, J.M., Glass, M. Gene (2003) [Pubmed]
  24. von Willebrand factor binds to native collagen VI primarily via its A1 domain. Hoylaerts, M.F., Yamamoto, H., Nuyts, K., Vreys, I., Deckmyn, H., Vermylen, J. Biochem. J. (1997) [Pubmed]
  25. Eglin c, a pharmacologically active elastase inhibitor. Schnebli, H.P., Seemüller, U., Fritz, H., Maschler, R., Liersch, M., Virca, G.D., Bodmer, J.L., Snider, G.L., Lucey, E.C., Stone, P.G. European journal of respiratory diseases. Supplement. (1985) [Pubmed]
  26. Association of LAR-like receptor protein tyrosine phosphatases with an enabled homolog in Hirudo medicinalis. Biswas, S.C., Dutt, A., Baker, M.W., Macagno, E.R. Mol. Cell. Neurosci. (2002) [Pubmed]
  27. Neuronal responses to purinoceptor agonists in the leech central nervous system. Backus, K.H., Braum, S., Lohner, F., Deitmer, J.W. J. Neurobiol. (1994) [Pubmed]
  28. Serotonin in the leech central nervous system: anatomical correlates and behavioral effects. Lent, C.M., Zundel, D., Freedman, E., Groome, J.R. J. Comp. Physiol. A (1991) [Pubmed]
  29. Structural analysis of leech galactocerebrosides using 1D and 2D NMR spectroscopy, gas chromatography-mass spectrometry, and FAB mass spectrometry. Zipser, B., Bradford, J.J., Hollingsworth, R.I. Carbohydr. Res. (1998) [Pubmed]
WikiGenes - Universities