The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neuropil


Psychiatry related information on Neuropil


High impact information on Neuropil

  • The application of an antagonist of ionotropic gamma-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons [10].
  • Autoradiograms prepared from adult rat brains demonstrate that nerve cells and neuropil in different brain regions selectively concentrate and retain intravenously administered triiodothyronine, by mechanisms susceptible to saturation with excess triiodothyronine [11].
  • We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells [12].
  • Neurofibrillary tangle-bearing neurons and neuropil threads contained NOS2 in brains from each of 11 AD patients ranging in age from 47 to 81 years [13].
  • The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil [14].

Chemical compound and disease context of Neuropil


Biological context of Neuropil


Anatomical context of Neuropil


Associations of Neuropil with chemical compounds

  • Furthermore, most labeled spines did not receive synapses with dopaminergic features, suggesting that many D1 receptors are at extrasynaptic sites, possibly receiving dopamine via diffusion in the neuropil [30].
  • Odorants evoked patterns of discrete Ca(2+) signals throughout the neuropil of a glomerulus [31].
  • We also show that oral treatment of caged bees with pilocarpine, a muscarinic agonist, induced an increase in the volume of the neuropil similar to that seen after a week of foraging experience [32].
  • Colloidal gold staining under the electron microscope was associated with 80- to 100-nm vesicles of average electron density, widely dispersed in the neuropil, with usually one and no more than four vesicles in individual sectioned neuronal processes [33].
  • After injections of estradiol benzoate or oil vehicle to the hosts for 20 successive days, the grafts were processed for semiquantitative electron microscopic study to examine synaptic density in the neuropil [34].

Gene context of Neuropil

  • Mutations of ey completely disrupted the MB neuropils, and a null mutation of dac resulted in marked disruption and aberrant axonal projections [35].
  • By IF, Cx36 labeling was widely distributed in neuropil, including along dendritic processes and within neuronal somata [36].
  • Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse [37].
  • Immunocytochemical studies of mouse brain reveal that PS1 protein accumulates in a variety of neuronal populations with enrichment in somatodendritic and neuropil compartments [38].
  • In contrast, when delivered intraseptally, the same dose of BDNF exhibited a widespread diffusion within the surrounding neuropil and retrograde labeling of neurons in the medial septum and the vertical limb of the diagonal band [39].

Analytical, diagnostic and therapeutic context of Neuropil


  1. Dopamine elicits feeding motor program in Limax maximus. Wieland, S.J., Gelperin, A. J. Neurosci. (1983) [Pubmed]
  2. Phenotypic heterogeneity within a new family with the MAPT p301s mutation. Yasuda, M., Nakamura, Y., Kawamata, T., Kaneyuki, H., Maeda, K., Komure, O. Ann. Neurol. (2005) [Pubmed]
  3. Ubiquitin conjugate immunoreactivity in the brains of scrapie infected mice. Lowe, J., McDermott, H., Kenward, N., Landon, M., Mayer, R.J., Bruce, M., McBride, P., Somerville, R.A., Hope, J. J. Pathol. (1990) [Pubmed]
  4. Differential expression of versican isoforms in brain tumors. Paulus, W., Baur, I., Dours-Zimmermann, M.T., Zimmermann, D.R. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  5. Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells. Frackowiak, J., Potempska, A., LeVine, H., Haske, T., Dickson, D., Mazur-Kolecka, B. J. Neuropathol. Exp. Neurol. (2005) [Pubmed]
  6. Abeta associated neuropil changes: correlation with neuronal loss and dementia. Knowles, R.B., Gomez-Isla, T., Hyman, B.T. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  7. Apolipoprotein D is a component of compact but not diffuse amyloid-beta plaques in Alzheimer's disease temporal cortex. Desai, P.P., Ikonomovic, M.D., Abrahamson, E.E., Hamilton, R.L., Isanski, B.A., Hope, C.E., Klunk, W.E., DeKosky, S.T., Kamboh, M.I. Neurobiol. Dis. (2005) [Pubmed]
  8. Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington's disease. Morton, A.J., Nicholson, L.F., Faull, R.L. Neuroscience (1993) [Pubmed]
  9. Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics. Iwatsubo, T., Hasegawa, M., Ihara, Y. Acta Neuropathol. (1994) [Pubmed]
  10. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. MacLeod, K., Laurent, G. Science (1996) [Pubmed]
  11. Iodine-125-labeled triiodothyronine in rat brain: evidence for localization in discrete neural systems. Dratman, M.B., Futaesaku, Y., Crutchfield, F.L., Berman, N., Payne, B., Sar, M., Stumpf, W.E. Science (1982) [Pubmed]
  12. Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A., Cull-Candy, S.G. Nat. Neurosci. (2005) [Pubmed]
  13. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. Vodovotz, Y., Lucia, M.S., Flanders, K.C., Chesler, L., Xie, Q.W., Smith, T.W., Weidner, J., Mumford, R., Webber, R., Nathan, C., Roberts, A.B., Lippa, C.F., Sporn, M.B. J. Exp. Med. (1996) [Pubmed]
  14. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Nighorn, A., Healy, M.J., Davis, R.L. Neuron (1991) [Pubmed]
  15. Glucose utilization rates in single neurons and neuropil determined by injecting nontracer amounts of 2-deoxyglucose. Akabayashi, A., Kato, T. J. Neurochem. (1993) [Pubmed]
  16. Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Zatta, P., Raso, M., Zambenedetti, P., Wittkowski, W., Messori, L., Piccioli, F., Mauri, P.L., Beltramini, M. Cell. Mol. Life Sci. (2005) [Pubmed]
  17. Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus. Kilman, V., Fénelon, V.S., Richards, K.S., Thirumalai, V., Meyrand, P., Marder, E. J. Comp. Neurol. (1999) [Pubmed]
  18. Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system. Dusart, I., Marty, S., Peschanski, M. Neuroscience (1992) [Pubmed]
  19. Immunocytochemical localization of FLRFamide-, proctolin-, and CCAP-like peptides in the stomatogastric nervous system and neurohemal structures of the crayfish, Cherax destructor. Skiebe, P., Dietel, C., Schmidt, M. J. Comp. Neurol. (1999) [Pubmed]
  20. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Matsuda, N., Mishina, M. Development (2004) [Pubmed]
  21. Striatal monoaminergic terminals in Lewy body and Alzheimer's dementias. Suzuki, M., Desmond, T.J., Albin, R.L., Frey, K.A. Ann. Neurol. (2002) [Pubmed]
  22. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. Rusakov, D.A., Kullmann, D.M. J. Neurosci. (1998) [Pubmed]
  23. Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. Shi, J., Aamodt, S.M., Constantine-Paton, M. J. Neurosci. (1997) [Pubmed]
  24. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Rival, T., Soustelle, L., Strambi, C., Besson, M.T., Iché, M., Birman, S. Curr. Biol. (2004) [Pubmed]
  25. Distribution of [1,2-3H]cholesterol in mouse brain after injection in the suckling period. Hedley-Whyte, E.T. J. Cell Biol. (1975) [Pubmed]
  26. N-cadherin is regulated by gonadal steroids in the adult hippocampus. Monks, D.A., Getsios, S., MacCalman, C.D., Watson, N.V. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  27. Brain transplants of cells expressing the carboxyl-terminal fragment of the Alzheimer amyloid protein precursor cause specific neuropathology in vivo. Neve, R.L., Kammesheidt, A., Hohmann, C.F. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  28. Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Eid, T., Lee, T.S., Thomas, M.J., Amiry-Moghaddam, M., Bjørnsen, L.P., Spencer, D.D., Agre, P., Ottersen, O.P., de Lanerolle, N.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  29. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Grundke-Iqbal, I., Iqbal, K., George, L., Tung, Y.C., Kim, K.S., Wisniewski, H.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  30. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Smiley, J.F., Levey, A.I., Ciliax, B.J., Goldman-Rakic, P.S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  31. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Wachowiak, M., Denk, W., Friedrich, R.W. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  32. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Ismail, N., Robinson, G.E., Fahrbach, S.E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  33. Vesicular localization of immunoreactive [Met5]enkephalin in the globus pallidus. Coulter, H.D. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  34. Synapse formation in response to estrogen in the medial amygdala developing in the eye. Nishizuka, M., Arai, Y. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  35. Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Kurusu, M., Nagao, T., Walldorf, U., Flister, S., Gehring, W.J., Furukubo-Tokunaga, K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  36. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Rash, J.E., Staines, W.A., Yasumura, T., Patel, D., Furman, C.S., Stelmack, G.L., Nagy, J.I. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  37. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. Irizarry, M.C., Soriano, F., McNamara, M., Page, K.J., Schenk, D., Games, D., Hyman, B.T. J. Neurosci. (1997) [Pubmed]
  38. Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. Lee, M.K., Slunt, H.H., Martin, L.J., Thinakaran, G., Kim, G., Gandy, S.E., Seeger, M., Koo, E., Price, D.L., Sisodia, S.S. J. Neurosci. (1996) [Pubmed]
  39. Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. Morse, J.K., Wiegand, S.J., Anderson, K., You, Y., Cai, N., Carnahan, J., Miller, J., DiStefano, P.S., Altar, C.A., Lindsay, R.M. J. Neurosci. (1993) [Pubmed]
  40. Light and electron microscopic localization of presenilin-1 in primate brain. Lah, J.J., Heilman, C.J., Nash, N.R., Rees, H.D., Yi, H., Counts, S.E., Levey, A.I. J. Neurosci. (1997) [Pubmed]
  41. Ciliary neurotrophic factor receptor alpha in spinal motoneurons is regulated by gonadal hormones. Forger, N.G., Wagner, C.K., Contois, M., Bengston, L., MacLennan, A.J. J. Neurosci. (1998) [Pubmed]
  42. Postmortem high-resolution 3-dimensional imaging of the primate brain: blockface imaging of perfusion stained tissue. Annese, J., Sforza, D.M., Dubach, M., Bowden, D., Toga, A.W. Neuroimage (2006) [Pubmed]
  43. Ascorbic acid in the brain. Grünewald, R.A. Brain Res. Brain Res. Rev. (1993) [Pubmed]
  44. Intracellular chloride activity in glial cells of the leech central nervous system. Ballanyi, K., Schlue, W.R. J. Physiol. (Lond.) (1990) [Pubmed]
WikiGenes - Universities