The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Stem cell factor influences neuro-immune interactions: the response of mast cells to pituitary adenylate cyclase activating polypeptide is altered by stem cell factor.

Mast cells degranulation can be elicited by a number of biologically important neuropeptides, but the mechanisms involved in mast cell-neuropeptide interactions have not been fully elucidated. Stem cell factor ( SCF), also known as c-kit or kit ligand, induces multiple effects on mast cells, including proliferation, differentiation, maturation, and prevents apoptosis. We investigated the ability of SCF to affect mast cell responsiveness to the neuropeptides pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). PACAP 1-27, PACAP1-38, or VIP failed to induced preformed mediator release from mouse bone-marrow-cultured mast cells (BMCMC) derived in concanavalin A-stimulated spleen conditioned medium (CM). By contrast, BMCMC grown in SCF-containing medium or freshly isolated peritoneal mast cells exhibited significant 3H-hydroxytrypamine (5-HT) release in response to PACAP peptides or VIP. Deoxyglucose and the mitochondrial inhibitor antimycin significantly inhibited PACAP-induced 5-HT release indicating that the central event induced by PACAP peptides was exocytosis. The G(alpha)i inhibitor, pertussis toxin, significantly diminished PACAP- induced 5-HT release from BMCMCs in SCF suggesting the involvement of heterotrimeric G-proteins. Western blot analysis using antibodies directed against the human VIP type I/PACAP type II receptor demonstrated a 70-72 kD immunoreactive protein expressed in greater amounts in BMCMC grown in SCF compared with BMCMC in CM. We conclude that SCF induces a mast cell population that is responsive to PACAPs and VIP involving a heterotrimeric G-protein-dependent mechanism.[1]

References

  1. Stem cell factor influences neuro-immune interactions: the response of mast cells to pituitary adenylate cyclase activating polypeptide is altered by stem cell factor. Schmidt-Choudhury, A., Meissner, J., Seebeck, J., Goetzl, E.J., Xia, M., Galli, S.J., Schmidt, W.E., Schaub, J., Wershil, B.K. Regul. Pept. (1999) [Pubmed]
 
WikiGenes - Universities