The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nitric oxide synthase in the glossopharyngeal and vagal afferent pathway of a teleost, Takifugu niphobles. The branchial vascular innervation.

To examine the presence of nitric oxide synthase (NOS) in the sensory system of the glossopharyngeal and vagus nerves of teleosts, nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) activity and immunoreactivity for NOS were examined in the puffer fish Takifugu niphobles. The nitrergic sensory neurons were located in the ganglia of both the glossopharyngeal and the vagal nerves. In the vagal ganglion, positive neurons were found in the subpopulations for the branchial rami and the coelomic visceral ramus, but not for the posterior ramus or the lateral line ramus. In the medulla, nitrergic afferent terminals were found in the glossopharyngeal lobe, the vagal lobe, and the commissural nucleus. In the gill structure, the nitrergic nerve fibers were seen in the nerve bundles running along the efferent branchial artery of all three gill arches. These fibers appeared to terminate in the proximal portion of the efferent filament arteries of three gill arches. On the other hand, autonomic neurons innervating the gill arches were unstained. These results suggest that nitrergic sensory neurons in the glossopharyngeal and vagal ganglia project their peripheral processes through the branchial rami to a specific portion of the branchial arteries, and they might play a role in baroreception of this fish. A possible role for nitric oxide (NO) in baroreception is also discussed.[1]

References

  1. Nitric oxide synthase in the glossopharyngeal and vagal afferent pathway of a teleost, Takifugu niphobles. The branchial vascular innervation. Funakoshi, K., Kadota, T., Atobe, Y., Nakano, M., Goris, R.C., Kishida, R. Cell Tissue Res. (1999) [Pubmed]
 
WikiGenes - Universities