The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tetraodontiformes


High impact information on Tetraodontiformes

  • Furthermore, these regions are functionally conserved in both chicken and pufferfish (Fugu rubripes) Hoxb-1 genes [4].
  • Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes) [5].
  • In fugu (puffer fish), expression of SCPP genes is also detected in an unusual beak-like structure that shelters numerous teeth [6].
  • Consistent with this hypothesis, the entire 33-kb pufferfish SCL locus directed appropriate expression to hemopoietic and neural tissue in transgenic zebrafish embryos, as did a 10.4-kb fragment containing the SCL gene and extending to the 5' and 3' flanking genes [7].
  • To further our understanding of the regulation of vertebrate globin loci, we have isolated cosmids containing alpha- and beta-globin genes from the pufferfish Fugu rubripes [8].

Biological context of Tetraodontiformes


Anatomical context of Tetraodontiformes


Associations of Tetraodontiformes with chemical compounds

  • This study confirms that the neurotoxic effects of puffer-fish poisoning can be explained by tetrodotoxin blockade of Na(+) channels [17].
  • We have characterized pufflectin, a novel mannose-specific lectin, from the skin mucus of the pufferfish, Fugu rubripes [18].
  • Novel immune-type receptor (NITR) genes, which initially were identified in the Southern pufferfish (Spheroides nephelus), encode products which consist of an extracellular variable (V) and V-like C2 (V/C2) domain, a transmembrane region, and a cytoplasmic tail, which typically possesses an immunoreceptor tyrosine-based inhibition motif (ITIM) [19].
  • Identification of cDNAs from Japanese pufferfish (Fugu rubripes) and Atlantic salmon (Salmo salar) coding for homologues to tetrapod prion proteins [20].
  • Serine/threonine phosphatases of the pufferfish, Fugu rubripes [21].

Gene context of Tetraodontiformes


Analytical, diagnostic and therapeutic context of Tetraodontiformes


  1. Infectious and toxic syndromes from fish and shellfish consumption. A review. Eastaugh, J., Shepherd, S. Arch. Intern. Med. (1989) [Pubmed]
  2. Ciguatera poisoning: a global issue with common management problems. Ting, J.Y., Brown, A.F. European journal of emergency medicine : official journal of the European Society for Emergency Medicine. (2001) [Pubmed]
  3. Disseminated cutaneous and synovial Mycobacterium marinum infection in a patient with systemic lupus erythematosus. Enzenauer, R.J., McKoy, J., Vincent, D., Gates, R. South. Med. J. (1990) [Pubmed]
  4. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Marshall, H., Studer, M., Pöpperl, H., Aparicio, S., Kuroiwa, A., Brenner, S., Krumlauf, R. Nature (1994) [Pubmed]
  5. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Tümpel, S., Cambronero, F., Wiedemann, L.M., Krumlauf, R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  6. Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Kawasaki, K., Suzuki, T., Weiss, K.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Regulation of the stem cell leukemia (SCL) gene: a tale of two fishes. Barton, L.M., Gottgens, B., Gering, M., Gilbert, J.G., Grafham, D., Rogers, J., Bentley, D., Patient, R., Green, A.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Functional and comparative analysis of globin loci in pufferfish and humans. Gillemans, N., McMorrow, T., Tewari, R., Wai, A.W., Burgtorf, C., Drabek, D., Ventress, N., Langeveld, A., Higgs, D., Tan-Un, K., Grosveld, F., Philipsen, S. Blood (2003) [Pubmed]
  9. Aberrant processing of the Fugu HD (FrHD) mRNA in mouse cells and in transgenic mice. Sathasivam, K., Baxendale, S., Mangiarini, L., Bertaux, F., Hetherington, C., Kanazawa, I., Lehrach, H., Bates, G.P. Hum. Mol. Genet. (1997) [Pubmed]
  10. The comparative genomic structure and sequence of the surfeit gene homologs in the puffer fish Fugu rubripes and their association with CpG-rich islands. Armes, N., Gilley, J., Fried, M. Genome Res. (1997) [Pubmed]
  11. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Kammandel, B., Chowdhury, K., Stoykova, A., Aparicio, S., Brenner, S., Gruss, P. Dev. Biol. (1999) [Pubmed]
  12. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Bagheri-Fam, S., Barrionuevo, F., Dohrmann, U., Günther, T., Schüle, R., Kemler, R., Mallo, M., Kanzler, B., Scherer, G. Dev. Biol. (2006) [Pubmed]
  13. Comparative genomics of the Hlx homeobox gene and protein: conservation of structure and expression from fish to mammals. Bates, M.D., Wells, J.M., Venkatesh, B. Gene (2005) [Pubmed]
  14. Molecular cloning and sequencing of Japanese pufferfish (Takifugu rubripes) NADPH oxidase cDNAs. Inoue, Y., Suenaga, Y., Yoshiura, Y., Moritomo, T., Ototake, M., Nakanishi, T. Dev. Comp. Immunol. (2004) [Pubmed]
  15. Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Lee, K.M., Kaneko, T., Aida, K. Gen. Comp. Endocrinol. (2006) [Pubmed]
  16. The use of mass fragmentography for the detection of tetrodotoxin in human body fluids. Moriya, F., Miyaishi, S., Yamamoto, Y., Ishizu, H. Nippon Hoigaku Zasshi (1992) [Pubmed]
  17. Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Kiernan, M.C., Isbister, G.K., Lin, C.S., Burke, D., Bostock, H. Ann. Neurol. (2005) [Pubmed]
  18. Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. Tsutsui, S., Tasumi, S., Suetake, H., Suzuki, Y. J. Biol. Chem. (2003) [Pubmed]
  19. Novel immune-type receptor genes. Litman, G.W., Hawke, N.A., Yoder, J.A. Immunol. Rev. (2001) [Pubmed]
  20. Identification of cDNAs from Japanese pufferfish (Fugu rubripes) and Atlantic salmon (Salmo salar) coding for homologues to tetrapod prion proteins. Oidtmann, B., Simon, D., Holtkamp, N., Hoffmann, R., Baier, M. FEBS Lett. (2003) [Pubmed]
  21. Serine/threonine phosphatases of the pufferfish, Fugu rubripes. Koh, C.G., Oon, S.H., Brenner, S. Gene (1997) [Pubmed]
  22. Comparative analysis and genomic structure of the tuberous sclerosis 2 (TSC2) gene in human and pufferfish. Maheshwar, M.M., Sandford, R., Nellist, M., Cheadle, J.P., Sgotto, B., Vaudin, M., Sampson, J.R. Hum. Mol. Genet. (1996) [Pubmed]
  23. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Kimura-Yoshida, C., Kitajima, K., Oda-Ishii, I., Tian, E., Suzuki, M., Yamamoto, M., Suzuki, T., Kobayashi, M., Aizawa, S., Matsuo, I. Development (2004) [Pubmed]
  24. Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Gensure, R.C., Ponugoti, B., Gunes, Y., Papasani, M.R., Lanske, B., Bastepe, M., Rubin, D.A., Jüppner, H. Endocrinology (2004) [Pubmed]
  25. Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ. Yan, W., Ma, L., Zilinski, C.A., Matzuk, M.M. Biol. Reprod. (2004) [Pubmed]
  26. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Qiu, A., Hogstrand, C. Gene (2004) [Pubmed]
  27. Detection of tetrodotoxin-like compounds in two species of puffer fishes (Lagocephalus lunaris lunaris and Fugu niphobles). Shiomi, K., Inaoka, H., Yamanaka, H., Kikuchi, T. Toxicon (1985) [Pubmed]
  28. Pufferfish and Zebrafish Have Five Distinct NPY Receptor Subtypes, but Have Lost Appetite Receptors Y1 and Y5. Larsson, T.A., Olsson, F., Sundström, G., Brenner, S., Venkatesh, B., Larhammar, D. Ann. N. Y. Acad. Sci. (2005) [Pubmed]
  29. Molecular phylogenetic relationships of puffer fish inferred from partial sequences of cytochrome b gene and restriction fragment length polymorphism analysis. Hsieh, Y.W., Hwang, D.F. J. Agric. Food Chem. (2004) [Pubmed]
  30. Enameloid formation in two tetraodontiform fish species with high and low fluoride contents in enameloid. Prostak, K.S., Seifert, P., Skobe, Z. Arch. Oral Biol. (1993) [Pubmed]
WikiGenes - Universities