The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Afferent Pathways

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Afferent Pathways

 

High impact information on Afferent Pathways

 

Chemical compound and disease context of Afferent Pathways

  • And, since there is in the nigrostriatal system a glutamatergic afferent pathway (the prefrontonigral projection) and since dopaminergic nigrostriatal neurons contain postsynaptic NMDA receptors, glutamatergic excitation may play a role in the degeneration of the nigrostriatal system in Parkinson's disease [11].
 

Biological context of Afferent Pathways

 

Anatomical context of Afferent Pathways

 

Associations of Afferent Pathways with chemical compounds

  • Ischemic episodes release a collage of chemicals, including adenosine and bradykinin, that excites the receptors of the sympathetic and vagal afferent pathways [22].
  • Interruption of cardiac sympathetic afferent pathways did not significantly attenuate increases in renal nerve activity with 5-HT [23].
  • In this review we consider the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells [24].
  • 7. It is concluded that excitatory amino acid receptors of both the NMDA and non-NMDA type are involved in the synaptic responses of v.b.t. neurones to sensory afferent stimulation, and that the apparent synaptic pharmacology depends on the mode of stimulation of the afferent pathway [25].
  • These data demonstrate that the DA content of the olfactory bulb can be influenced by either chemical or surgical modulation of the afferent pathway in two different species [26].
 

Gene context of Afferent Pathways

  • Moderate to dense hybridization signal was also observed in association with a variety of auditory, visual, and somatosensory relay nuclei, suggesting that the NTRL might be involved in a widespread modulation of primary afferent pathways [27].
  • The distribution, morphology, synaptic coverage and postsynaptic targets of calbindin-containing interneurons and afferent pathways have been analyzed in the control and epileptic CA1 region of the human hippocampus [28].
  • Thus, Ex4 and PYY(3-36NH2) suppress FI via independent mechanisms involving a GLP-1 receptor-dependent, sensory afferent pathway (Ex4) and a Y2-receptor mediated pathway (PYY(3-36NH2)) [29].
  • We determined whether pancreatic adaptation to a high-protein diet depends on ingested protein in the intestinal lumen and whether such adaptation depends on a CCK or capsaicin-sensitive vagal afferent pathway in pancreaticobiliary-diverted (PBD) rats [30].
  • Regulation of neurohypophyseal hormone release reflects the convergence of a large number of afferent pathways on the vasopressin (VP)- and oxytocin-producing neurons [31].
 

Analytical, diagnostic and therapeutic context of Afferent Pathways

References

  1. Differential effect of long-term esophageal acid exposure on mechanosensitivity and chemosensitivity in humans. Fass, R., Naliboff, B., Higa, L., Johnson, C., Kodner, A., Munakata, J., Ngo, J., Mayer, E.A. Gastroenterology (1998) [Pubmed]
  2. ANP enhances bradycardic reflexes in normotensive but not spontaneously hypertensive rats. Thomas, C.J., Rankin, A.J., Head, G.A., Woods, R.L. Hypertension (1997) [Pubmed]
  3. Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia. Danzer, M., Samberger, C., Schicho, R., Lippe, I.T., Holzer, P. Eur. J. Neurosci. (2004) [Pubmed]
  4. Comparison of neurons in rat medulla oblongata with fos immunoreactivity evoked by seizures, chemoreceptor, or baroreceptor stimulation. Kanter, R.K., Strauss, J.A., Sauro, M.D. Neuroscience (1996) [Pubmed]
  5. Estrogen but not progesterone facilitates the lordosis reaction to cervicovaginal stimulation of ovariectomized rats. Castro-Vazquez, A., Carreno, N.B. Physiol. Behav. (1985) [Pubmed]
  6. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Yoon, H., Enquist, L.W., Dulac, C. Cell (2005) [Pubmed]
  7. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Cockayne, D.A., Hamilton, S.G., Zhu, Q.M., Dunn, P.M., Zhong, Y., Novakovic, S., Malmberg, A.B., Cain, G., Berson, A., Kassotakis, L., Hedley, L., Lachnit, W.G., Burnstock, G., McMahon, S.B., Ford, A.P. Nature (2000) [Pubmed]
  8. Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic enzyme secretion. Li, Y., Owyang, C. J. Clin. Invest. (1993) [Pubmed]
  9. Mechanism of action of calcitonin gene-related peptide in inhibiting pancreatic enzyme secretion in rats. Li, Y., Kolligs, F., Owyang, C. Gastroenterology (1993) [Pubmed]
  10. A somatostatin analogue inhibits afferent pathways mediating perception of rectal distention. Hasler, W.L., Soudah, H.C., Owyang, C. Gastroenterology (1993) [Pubmed]
  11. The role of NMDA receptors in the slow neuronal degeneration of Parkinson's disease. Loopuijt, L.D., Schmidt, W.J. Amino Acids (1998) [Pubmed]
  12. The development of synaptic function and integration in the central auditory system. Sanes, D.H. J. Neurosci. (1993) [Pubmed]
  13. The pathophysiology of chronic relapsing experimental allergic encephalomyelitis in the Lewis rat. Stanley, G.P., Pender, M.P. Brain (1991) [Pubmed]
  14. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Raybould, H.E., Glatzle, J., Robin, C., Meyer, J.H., Phan, T., Wong, H., Sternini, C. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
  15. Induction of members of the Fos/Jun family of immediate-early genes in identified hypothalamic neurons: in vivo evidence for differential regulation. Luckman, S.M., Dye, S., Cox, H.J. Neuroscience (1996) [Pubmed]
  16. Input-specific immunolocalization of differentially phosphorylated Kv4.2 in the mouse brain. Varga, A.W., Anderson, A.E., Adams, J.P., Vogel, H., Sweatt, J.D. Learn. Mem. (2000) [Pubmed]
  17. Bladder afferent pathway and spinal cord injury: possible mechanisms inducing hyperreflexia of the urinary bladder. Yoshimura, N. Prog. Neurobiol. (1999) [Pubmed]
  18. Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat. Li, Y., Owyang, C. J. Physiol. (Lond.) (1996) [Pubmed]
  19. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day. Medanic, M., Gillette, M.U. J. Physiol. (Lond.) (1992) [Pubmed]
  20. Cholinergic deafferentation exacerbates seizure-induced loss of somatostatin-immunoreactive neurons in the rat hippocampus. Jolkkonen, J., Kähkönen, K., Pitkänen, A. Neuroscience (1997) [Pubmed]
  21. Systemic and intra-accumbens administration of amphetamine differentially affects cortical acetylcholine release. Arnold, H.M., Nelson, C.L., Neigh, G.N., Sarter, M., Bruno, J.P. Neuroscience (2000) [Pubmed]
  22. Mechanisms of cardiac pain. Foreman, R.D. Annu. Rev. Physiol. (1999) [Pubmed]
  23. In search of afferent pathways of a cardiogenic hypertensive chemoreflex. Thames, M.D., Johannsen, U.J., Mark, A.L. Circulation (1987) [Pubmed]
  24. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Leng, G., Brown, C.H., Russell, J.A. Prog. Neurobiol. (1999) [Pubmed]
  25. Excitatory amino acid receptors and synaptic transmission in the rat ventrobasal thalamus. Salt, T.E. J. Physiol. (Lond.) (1987) [Pubmed]
  26. Transsynaptic regulation of olfactory bulb catecholamines in mice and rats. Kawano, T., Margolis, F.L. J. Neurochem. (1982) [Pubmed]
  27. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. Sarret, P., Beaudet, A., Vincent, J.P., Mazella, J. J. Comp. Neurol. (1998) [Pubmed]
  28. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Wittner, L., Eross, L., Szabó, Z., Tóth, S., Czirják, S., Halász, P., Freund, T.F., Maglóczky, Z.S. Neuroscience (2002) [Pubmed]
  29. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Talsania, T., Anini, Y., Siu, S., Drucker, D.J., Brubaker, P.L. Endocrinology (2005) [Pubmed]
  30. Luminal dietary protein, not amino acids, induces pancreatic protease via CCK in pancreaticobiliary-diverted rats. Hara, H., Ohyama, S., Hira, T. Am. J. Physiol. Gastrointest. Liver Physiol. (2000) [Pubmed]
  31. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Sladek, C.D., Kapoor, J.R. Exp. Neurol. (2001) [Pubmed]
  32. Modulation of calcium by inhibitory systems in the developing auditory midbrain. Lo, Y.J., Rao, S.C., Sanes, D.H. Neuroscience (1998) [Pubmed]
  33. Activation of renal afferent pathways following furosemide treatment. I. Effects Of survival time and renal denervation. Fitch, G.K., Patel, K.P., Weiss, M.L. Brain Res. (2000) [Pubmed]
  34. Changes in arterial blood pressure during traction of extra-ocular muscles. A study in rabbits. Khurana, I., Khurana, A.K., Singh, P.I., Gombar, K.K. Anaesthesia. (1992) [Pubmed]
  35. Abdominal surgery-induced delayed gastric emptying in rats: role of CRF and sensory neurons. Barquist, E., Zinner, M., Rivier, J., Taché, Y. Am. J. Physiol. (1992) [Pubmed]
 
WikiGenes - Universities