The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Selective solubilization of high-molecular-mass neurofilament subunit during nerve regeneration.

A reduction in neurofilament (NF) protein synthesis and changes in their phosphorylation state are observed during nerve regeneration. To investigate how such metabolic changes are involved in the reorganization of the axonal cytoskeleton, we studied the injury-induced changes in the solubility and axonal transport of NF proteins as well as their phosphorylation states in the rat sciatic nerve. In the control nerve, 15-25% of high-molecular-mass NF subunit (NF-H) was recovered in the 1% Triton-soluble fraction when fractionated in the presence of phosphatase inhibitors. After a complete loss of NF proteins distal to the injury site (70-75 mm from the spinal cord) 1 week after injury, NF-H detected in the regenerating sprouts at 2 weeks or later exhibited higher solubility (>50%) and lower C-terminal phosphorylation level than NF-H in the control nerve. Solubility increase was also apparent with L-[35S]methionine-labeled NF-H that was in transit in the proximal axon at the time of injury. The low-molecular-mass subunit remained in the insoluble fraction in both the normal and the regenerating nerves, indicating that selective solubilization of NF-H rather than total filament disassembly occurs during regeneration.[1]

References

 
WikiGenes - Universities