The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Selective neuroprotective effects with insulin-like growth factor-1 in phenotypic striatal neurons following ischemic brain injury in fetal sheep.

Severe perinatal asphyxia can lead to injury and dysfunction of the basal ganglia. Post insult administration of insulin-like growth factor-1 is neuroprotective, particularly in the striatum. Insulin-like growth factor-1 is also known to be a neuromodulator of several types of striatal neurons. The striatum comprises various phenotypic neurons with a complex neurochemical anatomy and physiology. In the present study, we examined the specificity of neuronal rescue with insulin-like growth factor-1 on different striatal neurons. Bilateral brain injury was induced in near term fetal sheep by 30 min of reversible carotid artery occlusion. A single dose of 3 microg of insulin-like growth factor-1 was infused over 1 h into the lateral ventricle 90 min following ischemia. The histological and immunohistochemical outcome were examined after 4 days recovery using paraffin tissue preparations. Insulin-like growth factor-1 treatment (n = 11) significantly reduced the percentage of neuronal loss in the striatum compared with the vehicle treated group (n = 10, 28.3+/-5.1% vs 55.5+/-17.3%, P < 0.005). Immunohistochemical studies showed that ischemia resulted in a significant loss of calbindin-28kd, choline acetyltransferase, parvalbumin, glutamate acid decarboxylase, neuronal nitric oxide synthase and neuropeptide Y immunopositive neurons, compared with sham controls. Insulin-like growth factor-1 markedly prevented the loss of calbindin-28kd (n = 7, P < 0.05), choline acetyltransferase (n = 7, P < 0.05), neuropeptide Y (n = 7, P < 0.05), neuronal nitric oxide synthase (n = 8, P < 0.05) and glutamate acid decarboxylase (n = 9, P < 0.05) immunopositive neurons, but failed to protect parvalbumin (n = 6) immunopositive neurons. The present study indicates that the therapeutic effect of insulin-like growth factor-1 in the basal ganglia is selectively associated with cholinergic and some phenotypic GABAergic neurons. These data suggest a potential role for insulin-like growth factor-1 in preventing cerebral palsy due to perinatal asphyxia.[1]

References

  1. Selective neuroprotective effects with insulin-like growth factor-1 in phenotypic striatal neurons following ischemic brain injury in fetal sheep. Guan, J., Bennet, T.L., George, S., Waldvogel, H.J., Faull, R.L., Gluckman, P.D., Keunen, H., Gunn, A.J. Neuroscience (2000) [Pubmed]
 
WikiGenes - Universities