The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans.

Achondroplasia, the most common form of short-limbed dwarfism in humans, occurs between 1 in 15,000 and 40,000 live births. More than 90% of cases are sporadic and there is, on average, an increased paternal age at the time of conception of affected individuals. More then 97% of persons with achondroplasia have a Gly380Arg mutation in the transmembrane domain of the fibroblast growth factor receptor (FGFR) 3 gene. Mutations in the FGFR3 gene also result in hypochondroplasia, the lethal thanatophoric dysplasias, the recently described SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) dysplasia, and two craniosynostosis disorders: Muenke coronal craniosynostosis and Crouzon syndrome with acanthosis nigricans. Recent evidence suggests that the phenotypic differences may be due to specific alleles with varying degrees of ligand-independent activation, allowing the receptor to be constitutively active. Since the Gly380Arg achondroplasia mutation was recognized, similar observations regarding the conserved nature of FGFR mutations and resulting phenotype have been made regarding other skeletal phenotypes, including hypochondroplasia, thanatophoric dysplasia, and Muenke coronal craniosynostosis. These specific genotype-phenotype correlations in the FGFR disorders seem to be unprecedented in the study of human disease. The explanation for this high degree of mutability at specific bases remains an intriguing question.[1]


WikiGenes - Universities