The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/ SLP-65-deficient mice.

Engagement of the B cell receptor (BCR) leads to the activation of tyrosine kinases and other signaling molecules that ultimately determine the type and magnitude of the B lymphocyte's cellular response. The adaptor protein BLNK/ SLP-65 plays a pivotal role in BCR signal transduction by coupling Syk activation to downstream elements such as Grb2, phospholipase C-gamma, Vav and Nck. We have generated BLNK(-/-) mice to determine the physiological role of this protein in B cell development and activation. BLNK(-/-) mice exhibit an incomplete block in B cell development with a severe inhibition of pro-B to pre-B cell differentiation. BLNK(-/-) sIgM(+) cells can develop, seed the peripheral lymphoid tissues and accumulate in numbers overtime. However, these mutant B cells failed to mature and are non-responsive to BCR cross-linking in terms of proliferation and up-regulation of activation markers such as CD69 and CD86 (B7-2). In addition, the CD5(+) subset of B cells is absent. The immune response to T cell-independent antigen but not T cell-dependent antigen is also impaired. Overall, the phenotype of BLNK(-/-) mice bears a striking resemblance to that of xid mice which is the murine model of human XLA that has a mutation in Bruton's tyrosine kinase. This raises the interesting possibility that mutation in BLNK/ SLP-65 may be responsible for certain human immunodeficiencies.[1]

References

  1. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Xu, S., Tan, J.E., Wong, E.P., Manickam, A., Ponniah, S., Lam, K.P. Int. Immunol. (2000) [Pubmed]
 
WikiGenes - Universities