The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CD86  -  CD86 molecule

Homo sapiens

Synonyms: Activation B7-2 antigen, B7-2, B7.2, B70, BU63, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CD86

 

High impact information on CD86

 

Chemical compound and disease context of CD86

 

Biological context of CD86

 

Anatomical context of CD86

  • Soluble CD86 is a costimulatory molecule for human T lymphocytes [19].
  • Soluble CD86 is produced by resting monocytes and results from an alternatively spliced transcript (CD86deltaTM) characterized by deletion of the transmembrane domain [19].
  • Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7 [20].
  • Here we show that peripheral blood eosinophils from hypereosinophilic patients could express membrane CD86 but not CD80 [21].
  • CD86 expression on plasma cells was increased in 54% of the patients studied at diagnosis (n = 35) and was associated with a significantly shorter survival (median, 28 versus 57 months; chi(2) = 4.6; P =.03) and a higher tumor load (patients with more than 50% bone marrow plasma cells, 47% versus 6%; chi(2) = 7.2; P =.005) [22].
 

Associations of CD86 with chemical compounds

  • There was no significant correlation between high CD86 and other known prognostic markers, including serum beta(2)-microglobulin, serum thymidine kinase, and labeling index [22].
  • Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production [23].
  • Histamine induces CD86 expression on immature DC in a dose-dependent (significant at 10(-7) M) and transient manner (maximal after 24-h stimulation) [24].
  • In contrast, LPS-deficient OM selectively up-regulated TLR2 mRNA expression and induced moderate increases in both cytokine production and expression of CD86 and MHC class II molecules [25].
  • The actual expression of CD86 on cultured Langerhans cells was further confirmed by the detection of 70-kDa glycoprotein on Western blot analysis [26].
 

Physical interactions of CD86

  • CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation [23].
  • The CD86-V domain appears to have CTLA4 binding properties equivalent to that of intact CD86 [27].
  • Cross-linking of FcalphaRI but not of TfR resulted in up-regulation of major histocompatibility complex (MHC) class II/CD86 expression and secretion of IL-10 and IL-12 by immature Mo-DC [28].
  • Inhibition studies using the B7-binding fusion protein CTLA4Ig and antibodies against CD80 and CD86 demonstrate that CTLA4Ig and anti-CD86 inhibited influenza-specific T cell proliferation, interleukin (IL)-2 and interferon (IFN)-gamma production, and generation of influenza-specific CD8+ CTL [29].
  • Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules [30].
 

Enzymatic interactions of CD86

  • IRAK-1 is then subsequently phosphorylated to up-regulate CD86 expression, resulting in subsequent T-cell proliferation [31].
 

Regulatory relationships of CD86

  • In the present report, we show that pre-B cell ALL express alloantigen and adhesion molecules but uniformly lack B7-1 (CD80) and only a subset express B7-2 (CD86) [32].
  • The B7-1 and B7-2 expressed on the 'professional' antigen-presenting cells (APC) of the lymphoid system are counterreceptors for the T cell antigens CD28/CTLA-4 [33].
  • Binding studies using CD28-Ig and CTLA-4-Ig fusion proteins demonstrate that CD86 expressed on T cells has significantly reduced binding affinity for CTLA-4 and no detectable binding to CD28 [34].
  • Consistently, the secretion of IL-5 and IFN-gamma was not significantly inhibited by anti-B7-1 and B7-2 Abs, whereas IL-4 was inhibited by approximately 50% [35].
  • B7-2 is more effective than B7-1 in inducing TNF-alpha and IL-10 secretion in both HLA Class I-matched and mismatched situations [36].
 

Other interactions of CD86

  • Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation [37].
  • One of these residues, Y87, is conserved in all CD80 and CD86 cloned from various species [38].
  • Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes [21].
  • Antibodies specific for CD58, CD80, and CD86 were used in blocking experiments to assess the role of these molecules in providing a costimulatory signal to CD4(+) T cells by IECs [39].
  • Cells enriched in MDCs expressed CD86, moderate CD80, and little CD40, but cells enriched in PDCs had little to no expression of these three costimulatory molecules [40].
 

Analytical, diagnostic and therapeutic context of CD86

References

  1. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. Suvas, S., Singh, V., Sahdev, S., Vohra, H., Agrewala, J.N. J. Biol. Chem. (2002) [Pubmed]
  2. Cytokine expression by human peripheral blood dendritic cells stimulated in vitro with HIV-1 and herpes simplex virus. Ghanekar, S., Zheng, L., Logar, A., Navratil, J., Borowski, L., Gupta, P., Rinaldo, C. J. Immunol. (1996) [Pubmed]
  3. Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. Giguère, J.F., Bounou, S., Paquette, J.S., Madrenas, J., Tremblay, M.J. J. Virol. (2004) [Pubmed]
  4. Expression of B7-2 (CD86) molecules by Reed-Sternberg cells of Hodgkin's disease. Van Gool, S.W., Delabie, J., Vandenberghe, P., Coorevits, L., De Wolf-Peeters, C., Ceuppens, J.L. Leukemia (1997) [Pubmed]
  5. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Carreno, B.M., Collins, M. Annu. Rev. Immunol. (2002) [Pubmed]
  6. A trip through my life with an immunological theme. Janeway, C.A. Annu. Rev. Immunol. (2002) [Pubmed]
  7. Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation? Thompson, C.B. Cell (1995) [Pubmed]
  8. Defective post-thymic tolerance mechanisms during the chronic progressive stage of multiple sclerosis. Correale, J., Gilmore, W., Lopez, J., Li, S.Q., McMillan, M., Weiner, L.P. Nat. Med. (1996) [Pubmed]
  9. B70 antigen is a second ligand for CTLA-4 and CD28. Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J.H., Lanier, L.L., Somoza, C. Nature (1993) [Pubmed]
  10. Expression of costimulatory CD80/CD86-CD28/CD152 molecules in nasal mucosa of patients with perennial allergic rhinitis. Hattori, H., Okano, M., Yoshino, T., Akagi, T., Nakayama, E., Saito, C., Satoskar, A.R., Ogawa, T., Azuma, M., Nishizaki, K. Clin. Exp. Allergy (2001) [Pubmed]
  11. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen. Hulette, B.C., Ryan, C.A., Gildea, L.A., Gerberick, G.F. Toxicol. Appl. Pharmacol. (2005) [Pubmed]
  12. Vaccination with dendritic cells pulsed with apoptotic cells elicits effective antitumor immunity in murine hepatoma models. Hayashi, T., Nakao, K., Nagayama, Y., Saitoh, O., Ichikawa, T., Ishikawa, H., Hamasaki, K., Eguchi, K., Ishii, N. Int. J. Oncol. (2005) [Pubmed]
  13. CD80 (B7-1) and CD86 (B7-2) expression in multiple sclerosis patients: clinical subtype specific variation in peripheral monocytes and B cells and lack of modulation by high dose methylprednisolone. Boylan, M.T., Crockard, A.D., McDonnell, G.V., Armstrong, M.A., Hawkins, S.A. J. Neurol. Sci. (1999) [Pubmed]
  14. Intense expression of the b7-2 antigen presentation coactivator is an unfavorable prognostic indicator for differentiated thyroid carcinoma of children and adolescents. Shah, R., Banks, K., Patel, A., Dogra, S., Terrell, R., Powers, P.A., Fenton, C., Dinauer, C.A., Tuttle, R.M., Francis, G.L. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  15. Type I interferons in combination with bacterial stimuli induce apoptosis of monocyte-derived dendritic cells. Lehner, M., Felzmann, T., Clodi, K., Holter, W. Blood (2001) [Pubmed]
  16. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. Slavik, J.M., Hutchcroft, J.E., Bierer, B.E. J. Biol. Chem. (1999) [Pubmed]
  17. Psoriatic skin-derived dendritic cell function is inhibited by exogenous IL-10. Differential modulation of B7-1 (CD80) and B7-2 (CD86) expression. Mitra, R.S., Judge, T.A., Nestle, F.O., Turka, L.A., Nickoloff, B.J. J. Immunol. (1995) [Pubmed]
  18. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). Morton, P.A., Fu, X.T., Stewart, J.A., Giacoletto, K.S., White, S.L., Leysath, C.E., Evans, R.J., Shieh, J.J., Karr, R.W. J. Immunol. (1996) [Pubmed]
  19. Soluble CD86 is a costimulatory molecule for human T lymphocytes. Jeannin, P., Magistrelli, G., Aubry, J.P., Caron, G., Gauchat, J.F., Renno, T., Herbault, N., Goetsch, L., Blaecke, A., Dietrich, P.Y., Bonnefoy, J.Y., Delneste, Y. Immunity (2000) [Pubmed]
  20. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. Verbovetski, I., Bychkov, H., Trahtemberg, U., Shapira, I., Hareuveni, M., Ben-Tal, O., Kutikov, I., Gill, O., Mevorach, D. J. Exp. Med. (2002) [Pubmed]
  21. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. Woerly, G., Roger, N., Loiseau, S., Dombrowicz, D., Capron, A., Capron, M. J. Exp. Med. (1999) [Pubmed]
  22. B7-2-positive myeloma: incidence, clinical characteristics, prognostic significance, and implications for tumor immunotherapy. Pope, B., Brown, R.D., Gibson, J., Yuen, E., Joshua, D. Blood (2000) [Pubmed]
  23. Essential role for both CD80 and CD86 costimulation, but not CD40 interactions, in allergen-induced Th2 cytokine production from asthmatic bronchial tissue: role for alphabeta, but not gammadelta, T cells. Jaffar, Z.H., Stanciu, L., Pandit, A., Lordan, J., Holgate, S.T., Roberts, K. J. Immunol. (1999) [Pubmed]
  24. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. Caron, G., Delneste, Y., Roelandts, E., Duez, C., Herbault, N., Magistrelli, G., Bonnefoy, J.Y., Pestel, J., Jeannin, P. J. Immunol. (2001) [Pubmed]
  25. Activation of human dendritic cells is modulated by components of the outer membranes of Neisseria meningitidis. Al-Bader, T., Christodoulides, M., Heckels, J.E., Holloway, J., Semper, A.E., Friedmann, P.S. Infect. Immun. (2003) [Pubmed]
  26. Functional CD86 (B7-2/B70) on cultured human Langerhans cells. Yokozeki, H., Katayama, I., Ohki, O., Matsunaga, T., Watanabe, K., Satoh, T., Azuma, M., Okumura, K., Nishioka, K. J. Invest. Dermatol. (1996) [Pubmed]
  27. Interactions of CD80 and CD86 with CD28 and CTLA4. Ellis, J.H., Burden, M.N., Vinogradov, D.V., Linge, C., Crowe, J.S. J. Immunol. (1996) [Pubmed]
  28. Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. Pasquier, B., Lepelletier, Y., Baude, C., Hermine, O., Monteiro, R.C. J. Leukoc. Biol. (2004) [Pubmed]
  29. Analysis of the costimulatory requirements for generating human virus-specific in vitro T helper and effector responses. Blazevic, V., Trubey, C.M., Shearer, G.M. J. Clin. Immunol. (2001) [Pubmed]
  30. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules. Linsley, P.S., Nadler, S.G., Bajorath, J., Peach, R., Leung, H.T., Rogers, J., Bradshaw, J., Stebbins, M., Leytze, G., Brady, W. J. Biol. Chem. (1995) [Pubmed]
  31. Caveolin-1 Triggers T-cell Activation via CD26 in Association with CARMA1. Ohnuma, K., Uchiyama, M., Yamochi, T., Nishibashi, K., Hosono, O., Takahashi, N., Kina, S., Tanaka, H., Lin, X., Dang, N.H., Morimoto, C. J. Biol. Chem. (2007) [Pubmed]
  32. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Cardoso, A.A., Schultze, J.L., Boussiotis, V.A., Freeman, G.J., Seamon, M.J., Laszlo, S., Billet, A., Sallan, S.E., Gribben, J.G., Nadler, L.M. Blood (1996) [Pubmed]
  33. T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture. Satoh, J., Lee, Y.B., Kim, S.U. Brain Res. (1995) [Pubmed]
  34. Expression of a hypoglycosylated form of CD86 (B7-2) on human T cells with altered binding properties to CD28 and CTLA-4. Höllsberg, P., Scholz, C., Anderson, D.E., Greenfield, E.A., Kuchroo, V.K., Freeman, G.J., Hafler, D.A. J. Immunol. (1997) [Pubmed]
  35. Activation of human T cell lymphotropic virus type I-infected T cells is independent of B7 costimulation. Scholz, C., Freeman, G.J., Greenfield, E.A., Hafler, D.A., Höllsberg, P. J. Immunol. (1996) [Pubmed]
  36. B7-1 and B7-2 act differentially in the induction of a T cell response: their impact for a HLA-matched and HLA-mismatched anti-tumor immunotherapy. Kronfeld, K., Abken, H., Seliger, B. Int. J. Cancer (2005) [Pubmed]
  37. Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Cai, Y.C., Cefai, D., Schneider, H., Raab, M., Nabavi, N., Rudd, C.E. Immunity (1995) [Pubmed]
  38. Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA4. Fargeas, C.A., Truneh, A., Reddy, M., Hurle, M., Sweet, R., Sékaly, R.P. J. Exp. Med. (1995) [Pubmed]
  39. Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Framson, P.E., Cho, D.H., Lee, L.Y., Hershberg, R.M. Gastroenterology (1999) [Pubmed]
  40. Characterization of myeloid and plasmacytoid dendritic cells in human lung. Masten, B.J., Olson, G.K., Tarleton, C.A., Rund, C., Schuyler, M., Mehran, R., Archibeque, T., Lipscomb, M.F. J. Immunol. (2006) [Pubmed]
  41. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. Servet-Delprat, C., Vidalain, P.O., Bausinger, H., Manié, S., Le Deist, F., Azocar, O., Hanau, D., Fischer, A., Rabourdin-Combe, C. J. Immunol. (2000) [Pubmed]
  42. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. Peach, R.J., Bajorath, J., Naemura, J., Leytze, G., Greene, J., Aruffo, A., Linsley, P.S. J. Biol. Chem. (1995) [Pubmed]
  43. Glucocorticoids inhibit activation-dependent expression of costimulatory molecule B7-1 in human monocytes. Girndt, M., Sester, U., Kaul, H., Hünger, F., Köhler, H. Transplantation (1998) [Pubmed]
  44. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Kirk, A.D., Tadaki, D.K., Celniker, A., Batty, D.S., Berning, J.D., Colonna, J.O., Cruzata, F., Elster, E.A., Gray, G.S., Kampen, R.L., Patterson, N.B., Szklut, P., Swanson, J., Xu, H., Harlan, D.M. Transplantation (2001) [Pubmed]
  45. CD28/CTLA-4 ligands: the gene encoding CD86 (B70/B7.2) maps to the same region as CD80 (B7/B7.1) gene in human chromosome 3q13-q23. Fernández-Ruiz, E., Somoza, C., Sánchez-Madrid, F., Lanier, L.L. Eur. J. Immunol. (1995) [Pubmed]
 
WikiGenes - Universities