The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor.

Tandem pore domain acid-sensitive K(+) channel 3 (TASK-3) is a new member of the tandem pore domain potassium channel family. A cDNA encoding a 365- amino acid polypeptide with four putative transmembrane segments and two pore regions was isolated from guinea pig brain. An orthologous sequence was cloned from a human genomic library. Although TASK-3 is 62% identical to TASK-1, the cytosolic C-terminal sequence is only weakly conserved. Analysis of the gene structure identified an intron within the conserved GYG motif of the first pore region. Reverse transcriptase-polymerase chain reaction analysis showed strong expression in brain but very weak mRNA levels in other tissues. Cell-attached patch-clamp recordings of TASK-3 expressed in HEK293 cells showed that the single channel current-voltage relation was inwardly rectifying, and open probability increased markedly with depolarization. Removal of external divalent cations increased the mean single channel current measured at -100 mV from -2.3 to -5.8 pA. Expression of TASK-3 in Xenopus oocytes revealed an outwardly rectifying K(+) current that was strongly decreased in the presence of lower extracellular pH. Substitution of the histidine residue His-98 by asparagine or tyrosine abolished pH sensitivity. This histidine, which is located at the outer part of the pore adjacent to the selectivity filter, may be an essential component of the extracellular pH sensor.[1]

References

  1. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Müller, R., Daut, J., Karschin, A., Derst, C. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities