The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KCNK9  -  potassium channel, two pore domain...

Homo sapiens

Synonyms: Acid-sensitive potassium channel protein TASK-3, K2p9.1, KT3.2, Potassium channel subfamily K member 9, TASK-3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KCNK9


Psychiatry related information on KCNK9

  • However, Dauncey reported impairment of a relatively simple reaction time task 3 hr after a dose of alcohol, when the blood alcohol concentration was at or near 0 [4].

High impact information on KCNK9

  • In this report, we demonstrate that a point mutation (G95E) within the consensus K+ filter of TASK3 not only abolished TASK3 potassium channel activity but also abrogated its oncogenic functions, including proliferation in low serum, resistance to apoptosis, and promotion of tumor growth [5].
  • TASK3 gene (Kcnk9) is amplified and overexpressed in several types of human carcinomas [5].
  • TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance [6].
  • Finally, we have used Zn(2+) treatment as a maneuver able to discriminate between these two homologues of hTASK and show that the most likely candidate channel for O(2) sensing in these cells is hTASK3 [7].
  • Expression of TASK-3 in Xenopus oocytes revealed an outwardly rectifying K(+) current that was strongly decreased in the presence of lower extracellular pH [8].

Chemical compound and disease context of KCNK9

  • Acidic pH values and hypoxia inhibit TASK-1 and TASK-3 channel function, and halothane enhances this function [9].
  • Furthermore, we have used antisense oligodeoxynucleotides directed against hTASK1 and hTASK3 to suppress almost completely the hTASK1 protein and show that these cells no longer respond to acute hypoxia; this behavior was not mirrored in liposome-only or missense-treated cells [7].

Biological context of KCNK9


Anatomical context of KCNK9


Associations of KCNK9 with chemical compounds


Other interactions of KCNK9

  • A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy [2].
  • When two TASK-3 coding sequences were concatenated, and the entire homodimer was expressed as a single polypeptide chain, the resulting tandem channel was also sensitive to RR [16].
  • They represented three different levels of language complexity from lowest to highest as follows: task 1, object naming; task 2, sentence completion; and task 3, responsive naming [20].
  • Quantitative determination of mRNA expression levels and immunocytochemical staining demonstrated that TASK3 and HCN2 channels represent the dominant thalamic isoforms and are coexpressed in TC neurons [21].
  • TRAAK and TASK-3 subunits showed significant decreases at 3 days and 3 weeks following deafness, but these differences were no longer significant at 3 months [22].

Analytical, diagnostic and therapeutic context of KCNK9


  1. Altered expression of KCNK9 in colorectal cancers. Kim, C.J., Cho, Y.G., Jeong, S.W., Kim, Y.S., Kim, S.Y., Nam, S.W., Lee, S.H., Yoo, N.J., Lee, J.Y., Park, W.S. APMIS (2004) [Pubmed]
  2. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. Holter, J., Carter, D., Leresche, N., Crunelli, V., Vincent, P. J. Mol. Neurosci. (2005) [Pubmed]
  3. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Mu, D., Chen, L., Zhang, X., See, L.H., Koch, C.M., Yen, C., Tong, J.J., Spiegel, L., Nguyen, K.C., Servoss, A., Peng, Y., Pei, L., Marks, J.R., Lowe, S., Hoey, T., Jan, L.Y., McCombie, W.R., Wigler, M.H., Powers, S. Cancer Cell (2003) [Pubmed]
  4. Investigation of the "hangover" effects of an acute dose of alcohol on psychomotor performance. Lemon, J., Chesher, G., Fox, A., Greeley, J., Nabke, C. Alcohol. Clin. Exp. Res. (1993) [Pubmed]
  5. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Pei, L., Wiser, O., Slavin, A., Mu, D., Powers, S., Jan, L.Y., Hoey, T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. Talley, E.M., Bayliss, D.A. J. Biol. Chem. (2002) [Pubmed]
  7. Combined antisense and pharmacological approaches implicate hTASK as an airway O(2) sensing K(+) channel. Hartness, M.E., Lewis, A., Searle, G.J., O'Kelly, I., Peers, C., Kemp, P.J. J. Biol. Chem. (2001) [Pubmed]
  8. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Müller, R., Daut, J., Karschin, A., Derst, C. J. Biol. Chem. (2000) [Pubmed]
  9. The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration. Cotten, J.F., Keshavaprasad, B., Laster, M.J., Eger, E.I., Yost, C.S. Anesth. Analg. (2006) [Pubmed]
  10. KT3.2 and KT3.3, two novel human two-pore K(+) channels closely related to TASK-1. Vega-Saenz de Miera, E., Lau, D.H., Zhadina, M., Pountney, D., Coetzee, W.A., Rudy, B. J. Neurophysiol. (2001) [Pubmed]
  11. PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. Lopes, C.M., Rohács, T., Czirják, G., Balla, T., Enyedi, P., Logothetis, D.E. J. Physiol. (Lond.) (2005) [Pubmed]
  12. Immunolocalization of TASK-3 (KCNK9) to a subset of cortical neurons in the rat CNS. Callahan, R., Labunskiy, D.A., Logvinova, A., Abdallah, M., Liu, C., Cotten, J.F., Yost, C.S. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  13. TASK-5, a novel member of the tandem pore K+ channel family. Ashmole, I., Goodwin, P.A., Stanfield, P.R. Pflugers Arch. (2001) [Pubmed]
  14. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. Rajan, S., Preisig-Müller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, V., Musset, B., Schlichthörl, G., Derst, C., Karschin, A., Daut, J. J. Physiol. (Lond.) (2002) [Pubmed]
  15. Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum. Rusznák, Z., Pocsai, K., Kovács, I., Pór, A., Pál, B., Bíró, T., Szücs, G. Cell. Mol. Life Sci. (2004) [Pubmed]
  16. Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Czirják, G., Enyedi, P. Mol. Pharmacol. (2003) [Pubmed]
  17. Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. Clarke, C.E., Veale, E.L., Green, P.J., Meadows, H.J., Mathie, A. J. Physiol. (Lond.) (2004) [Pubmed]
  18. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. Berg, A.P., Talley, E.M., Manger, J.P., Bayliss, D.A. J. Neurosci. (2004) [Pubmed]
  19. TASK-3, a new member of the tandem pore K(+) channel family. Kim, Y., Bang, H., Kim, D. J. Biol. Chem. (2000) [Pubmed]
  20. Language in the nondominant right hemisphere. Bhatnagar, S., Andy, O.J. Arch. Neurol. (1983) [Pubmed]
  21. Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. Meuth, S.G., Kanyshkova, T., Meuth, P., Landgraf, P., Munsch, T., Ludwig, A., Hofmann, F., Pape, H.C., Budde, T. J. Neurophysiol. (2006) [Pubmed]
  22. Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Holt, A.G., Asako, M., Keith Duncan, R., Lomax, C.A., Juiz, J.M., Altschuler, R.A. Hear. Res. (2006) [Pubmed]
  23. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Karschin, C., Wischmeyer, E., Preisig-Müller, R., Rajan, S., Derst, C., Grzeschik, K.H., Daut, J., Karschin, A. Mol. Cell. Neurosci. (2001) [Pubmed]
  24. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Chapman, C.G., Meadows, H.J., Godden, R.J., Campbell, D.A., Duckworth, M., Kelsell, R.E., Murdock, P.R., Randall, A.D., Rennie, G.I., Gloger, I.S. Brain Res. Mol. Brain Res. (2000) [Pubmed]
WikiGenes - Universities