Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin.
Eukaryotic chromosome segregation depends on the mitotic spindle apparatus, a bipolar array of microtubules nucleated from centrosomes. Centrosomal microtubule nucleation requires attachment of gamma-tubulin ring complexes to a salt-insoluble centrosomal core, but the factor(s) underlying this attachment remains unknown. In budding yeast, this attachment is provided by the coiled-coil protein Spc110p, which links the yeast gamma-tubulin complex to the core of the yeast centrosome. Here, we show that the large coiled-coil protein kendrin is a human orthologue of Spc110p. We identified kendrin by its C-terminal calmodulin-binding site, which shares homology with the Spc110p calmodulin-binding site. Kendrin localizes specifically to centrosomes throughout the cell cycle. N-terminal regions of kendrin share significant sequence homology with pericentrin, a previously identified murine centrosome component known to interact with gamma-tubulin. In mitotic human breast carcinoma cells containing abundant centrosome-like structures, kendrin is found only at centrosomes associated with spindle microtubules.[1]References
- Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin. Flory, M.R., Moser, M.J., Monnat, R.J., Davis, T.N. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg