The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PCNT  -  pericentrin

Homo sapiens

Synonyms: KEN, KIAA0402, Kendrin, MOPD2, PCN, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PCNT

  • Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin [1].
  • In addition, we analyzed glioma U251 cells, which co-expressed MT1-MMP with the wild type murine pericentrin and the D948G mutant [2].
  • Divergent localizations of gamma-tubulin and pericentrin suggest a differential distribution of these 2 centrosome-associated proteins in glioblastoma cell lines [3].
  • Upon infection of enucleated cells with Cy3-labeled Ad, the majority of Ad capsid trafficked to a discrete, centrally located site which colocalized with pericentrin, a component of the MTOC [4].
  • We examined 34 CML samples including CD 34+Ph+cells of 18 newly diagnosed patients (chronic phase (CP)) and 16 blast crisis (BC) specimens by using a centrosome-specific antibody to pericentrin [5].
 

High impact information on PCNT

  • We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella [6].
  • Formation of new centrosomes occurs in two steps: approximately 5-8 h after ablation, clouds of pericentriolar material (PCM) containing gamma-tubulin and pericentrin appear in the cell [7].
  • Numerous coiled-coil structures were predicted from AKAP450, and weak homology to pericentrin, giantin and other structural proteins was observed [8].
  • The pericentriolar components, gamma tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists [9].
  • In mitotic human breast carcinoma cells containing abundant centrosome-like structures, kendrin is found only at centrosomes associated with spindle microtubules [10].
 

Biological context of PCNT

 

Anatomical context of PCNT

  • Immunocytochemical analysis revealed the colocalization of DISC1 and kendrin to the centrosome [15].
  • These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC [16].
  • Using immunofluorescence analysis with gamma-tubulin and pericentrin antibodies, paraffin-embedded sections from 40 malignant biliary diseases including gallbladder cancers (GC; n = 13), intrahepatic cholangiocellular carcinoma (CCC; n = 19), and extrahepatic bile duct cancers (BDC; n = 8) were examined [17].
  • Immunochemical evidence indicates that at least several of the proteins found in mammalian centrosomes, gamma-tubulin, centrin, pericentrin, and polypeptides recognized by the monoclonal antibodies MPM-2, 6C6, and C9 also recognize putative lower land plant MTOCs, indicating shared mechanisms of nucleation/organization in plants and animals [18].
  • We show that the centrosome/aggresome-related proteins gamma-tubulin and pericentrin display an aggresome-like distribution in Lewy bodies in PD and DLB [19].
 

Physical interactions of PCNT

 

Other interactions of PCNT

  • Residues 446-533 of DISC1 were essential for the interaction with kendrin [15].
  • Immunodepletion of neither pericentrin-B nor PCM-1 from cellular extracts inhibited the ability of salt-stripped centrosomes to recover microtubule nucleation potential, demonstrating that neither protein plays a key role in microtubule nucleation processes [12].
  • Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation [21].
  • We constructed three TCDD exposure indices from the questionnaire data: the number of days of skin exposure (DAYS), the percentage of skin area exposed (PCNT), and a combined index (SRI) which was the product of these and the concentration of TCDD in the herbicide [22].
  • The amplified centrosomes co-localized with centrosome markers gamma-tubulin, centrin-2 and kendrin as well as endogenous CG-NAP [23].
 

Analytical, diagnostic and therapeutic context of PCNT

References

  1. Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia. Fritzler, M.J., Zhang, M., Stinton, L.M., Rattner, J.B. BMC pediatrics [electronic resource]. (2003) [Pubmed]
  2. Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. Golubkov, V.S., Chekanov, A.V., Doxsey, S.J., Strongin, A.Y. J. Biol. Chem. (2005) [Pubmed]
  3. Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. Katsetos, C.D., Reddy, G., Dráberová, E., Smejkalová, B., Del Valle, L., Ashraf, Q., Tadevosyan, A., Yelin, K., Maraziotis, T., Mishra, O.P., Mörk, S., Legido, A., Nissanov, J., Baas, P.W., de Chadarévian, J.P., Dráber, P. J. Neuropathol. Exp. Neurol. (2006) [Pubmed]
  4. Association of adenovirus with the microtubule organizing center. Bailey, C.J., Crystal, R.G., Leopold, P.L. J. Virol. (2003) [Pubmed]
  5. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Giehl, M., Fabarius, A., Frank, O., Hochhaus, A., Hafner, M., Hehlmann, R., Seifarth, W. Leukemia (2005) [Pubmed]
  6. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Jurczyk, A., Gromley, A., Redick, S., San Agustin, J., Witman, G., Pazour, G.J., Peters, D.J., Doxsey, S. J. Cell Biol. (2004) [Pubmed]
  7. De novo formation of centrosomes in vertebrate cells arrested during S phase. Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., Wang, C.L. J. Cell Biol. (2002) [Pubmed]
  8. Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. Witczak, O., Skålhegg, B.S., Keryer, G., Bornens, M., Taskén, K., Jahnsen, T., Orstavik, S. EMBO J. (1999) [Pubmed]
  9. Dynactin is required for microtubule anchoring at centrosomes. Quintyne, N.J., Gill, S.R., Eckley, D.M., Crego, C.L., Compton, D.A., Schroer, T.A. J. Cell Biol. (1999) [Pubmed]
  10. Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin. Flory, M.R., Moser, M.J., Monnat, R.J., Davis, T.N. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  11. Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter. Chen, H., Gos, A., Morris, M.A., Antonarakis, S.E. Genomics (1996) [Pubmed]
  12. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. Li, Q., Hansen, D., Killilea, A., Joshi, H.C., Palazzo, R.E., Balczon, R. J. Cell. Sci. (2001) [Pubmed]
  13. Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. Diviani, D., Langeberg, L.K., Doxsey, S.J., Scott, J.D. Curr. Biol. (2000) [Pubmed]
  14. The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Flory, M.R., Davis, T.N. Genomics (2003) [Pubmed]
  15. DISC1 localizes to the centrosome by binding to kendrin. Miyoshi, K., Asanuma, M., Miyazaki, I., Diaz-Corrales, F.J., Katayama, T., Tohyama, M., Ogawa, N. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  16. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H., Ono, Y. Mol. Biol. Cell (2002) [Pubmed]
  17. Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Kuo, K.K., Sato, N., Mizumoto, K., Maehara, N., Yonemasu, H., Ker, C.G., Sheen, P.C., Tanaka, M. Hepatology (2000) [Pubmed]
  18. Microtubule-organizing centers and nucleating sites in land plants. Vaughn, K.C., Harper, J.D. Int. Rev. Cytol. (1998) [Pubmed]
  19. Aggresome-related biogenesis of Lewy bodies. McNaught, K.S., Shashidharan, P., Perl, D.P., Jenner, P., Olanow, C.W. Eur. J. Neurosci. (2002) [Pubmed]
  20. Nudel contributes to microtubule anchoring at the mother centriole and is involved in both dynein-dependent and -independent centrosomal protein assembly. Guo, J., Yang, Z., Song, W., Chen, Q., Wang, F., Zhang, Q., Zhu, X. Mol. Biol. Cell (2006) [Pubmed]
  21. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Fabbro, M., Zhou, B.B., Takahashi, M., Sarcevic, B., Lal, P., Graham, M.E., Gabrielli, B.G., Robinson, P.J., Nigg, E.A., Ono, Y., Khanna, K.K. Dev. Cell (2005) [Pubmed]
  22. Indices of TCDD exposure and TCDD body burden in veterans of Operation Ranch Hand. Michalek, J.E., Wolfe, W.H., Miner, J.C., Papa, T.M., Pirkle, J.L. Journal of exposure analysis and environmental epidemiology. (1995) [Pubmed]
  23. Centrosome-targeting region of CG-NAP causes centrosome amplification by recruiting cyclin E-cdk2 complex. Nishimura, T., Takahashi, M., Kim, H.S., Mukai, H., Ono, Y. Genes Cells (2005) [Pubmed]
  24. Protein 4.1R regulates interphase microtubule organization at the centrosome. Pérez-Ferreiro, C.M., Vernos, I., Correas, I. J. Cell. Sci. (2004) [Pubmed]
  25. Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Schneeweiss, A., Sinn, H.P., Ehemann, V., Khbeis, T., Neben, K., Krause, U., Ho, A.D., Bastert, G., Krämer, A. Int. J. Cancer (2003) [Pubmed]
  26. Characterization of pericentrin isoforms in vivo. Miyoshi, K., Asanuma, M., Miyazaki, I., Matsuzaki, S., Tohyama, M., Ogawa, N. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
 
WikiGenes - Universities