The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transforming growth factor-beta stimulates inorganic phosphate transport and expression of the type III phosphate transporter Glvr-1 in chondrogenic ATDC5 cells.

Members of the transforming growth factor (TGF)-beta family are important regulators of skeletal development. In this study, we investigated the effect of TGF-beta1 on inorganic phosphate (Pi) transport and on expression of the type III Pi carriers Glvr-1 and Ram-1 in murine ATDC5 chondrocytes. TGF-beta1 induced a selective, dose- and time-dependent increase in sodium-dependent Pi transport in ATDC5 cells. This response was dependent on RNA and protein synthesis and reflected a change in the maximal rate of the transport system, suggesting that TGF-beta1 induces the synthesis of new Pi carriers and their insertion into the plasma membrane. Consistently, Northern blotting analysis showed a dose-dependent increase in Glvr-1 messenger RNA expression in response to TGF-beta1, which preceded the maximal stimulation of Pi transport by several hours. Glvr-1 thus likely mediates at least part of the increase in Pi uptake induced by TGF-beta1. Ram-1 messenger RNA expression was not affected by TGF-beta1. TGF-beta1 activated the Smad signaling pathway and the mitogen- activated protein kinases ERK and p38 in ATDC5 cells. Unlike the regulation of Pi transport by receptor tyrosine kinase agonists in osteoblasts, the effect of TGF-beta1 on Pi uptake in ATDC5 cells did not involve protein kinase C or mitogen-activated protein kinases, suggesting that a specific, possibly Smad-dependent, signal mediates this response. In conclusion, TGF-beta1 stimulates Pi transport and Glvr-1 expression in chondrocytes, suggesting that, like proliferation, differentiation, and matrix synthesis, Pi handling is subject to regulation by TGF-beta3 family members in bone-forming cells.[1]

References

 
WikiGenes - Universities