The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Testis glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase activities in aminoguanidine-treated diabetic rats.

Severe steroidogenic and spermatogenic alterations are reported in association with diabetic manifestations in humans and experimental animals. This study was planned to determine whether oxidative stress is involved in diabetes-induced alterations in the testes. Diabetes was induced in male rats by injection of 50 mg/kg of streptozotocin (STZ). Ten weeks after injection of STZ, levels of selenium and activities of selenium dependent-glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) were measured in rat testis. Lipid and protein oxidations were evaluated as measurements of testis malondialdehyde (MDA) and protein carbonyl levels, respectively. Testis sulfydryl (SH) levels were also determined. The control levels of GPx and PHGPx activities were found to be 46.5 +/- 6.2 and 108.8 +/- 19.8 nmol GSH/mg protein/min, respectively. Diabetes caused an increase in testis GPx (65.0 +/- 21.1) and PHGPx (155.9 +/- 43.1) activities but did not affect the levels of selenium or SH. However, the testis MDA and protein carbonyl levels as markers of lipid and protein oxidation, respectively, did not increase in the diabetic group. Aminoguanidine (AG) treatment of diabetic rats returned the testis PHGPx activity (136.5 +/- 24.9) to the control level but did not change the value of GPx activity (69.2 +/- 17.4) compared with diabetic group. MDA and protein carbonyl levels in testis were not affected by AG treatment of diabetic rats, but interestingly AG caused SH levels to increase. The results indicate that reactive oxygen radicals were not involved in possible testicular complications of diabetes because diabetes-induced activations of GPx and PHGPx provided protection against oxidative stress, which was reported to be related to some diabetic complications.[1]

References

 
WikiGenes - Universities