The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Diabetes Complications

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diabetes Complications

 

Psychiatry related information on Diabetes Complications

 

High impact information on Diabetes Complications

 

Chemical compound and disease context of Diabetes Complications

  • Potentially, the development of newer drugs that selectively inhibit AR-mediated glucose metabolism and signaling, without affecting aldehyde detoxification, may be useful in preventing inflammation associated with the development of diabetic complications, particularly micro- and macrovascular diseases [14].
  • Recent evidence suggests that common stress-activated signaling pathways such as nuclear factor-kappaB, p38 MAPK, and NH2-terminal Jun kinases/stress-activated protein kinases underlie the development of these late diabetic complications [15].
  • The increase in the concentration of fructose 3-phosphate in the lens of diabetic rats suggests that it and its hydrolysis product, 3-deoxyglucosone, may be responsible in part for the development of some diabetic complications in the lens [16].
  • Oxybutynin for diabetic complications [17].
  • These results, taken together with a recent demonstration of increased serum 3-DG levels in diabetes, strongly suggest that imidazolone produced by 3-DG may contribute to the progression of long-term diabetic complications such as nephropathy and atherosclerosis [18].
 

Biological context of Diabetes Complications

 

Anatomical context of Diabetes Complications

 

Gene context of Diabetes Complications

  • The physiological impact of basal AR2 expression in such cells may be limited to hyperglycemic states in which AR2 promotes pathological polyol accumulation, a mechanism invoked in the pathogenesis of diabetic complications [28].
  • Thus, VEGF therapy may be useful in the treatment of diabetic complications characterized by impaired neovascularization [29].
  • The aim of the present study was to investigate the possible association of plasma CTGF levels in type 1 diabetic patients with markers relevant to development of diabetes complications [30].
  • Consequently, extrapolations concerning the pathogenetic role of the IGF/IGFBP system in the development of diabetic complications at the tissue level remain speculative [31].
  • Aldose reductase (AR), the first enzyme in the polyol pathway, has been implicated in the pathogenesis of diabetic complications, although its physiological role is unclear [32].
 

Analytical, diagnostic and therapeutic context of Diabetes Complications

References

  1. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Yabe-Nishimura, C. Pharmacol. Rev. (1998) [Pubmed]
  2. Recruitment of a repressosome complex at the growth hormone receptor promoter and its potential role in diabetic nephropathy. Gowri, P.M., Yu, J.H., Shaufl, A., Sperling, M.A., Menon, R.K. Mol. Cell. Biol. (2003) [Pubmed]
  3. Chelating activity of advanced glycation end-product inhibitors. Price, D.L., Rhett, P.M., Thorpe, S.R., Baynes, J.W. J. Biol. Chem. (2001) [Pubmed]
  4. Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and nonfatal vascular events in NIDDM subjects. Nakano, S., Fukuda, M., Hotta, F., Ito, T., Ishii, T., Kitazawa, M., Nishizawa, M., Kigoshi, T., Uchida, K. Diabetes (1998) [Pubmed]
  5. Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species. Zhang, C., Yang, J., Jennings, L.K. Diabetes (2004) [Pubmed]
  6. Sildenafil citrate for the treatment of erectile dysfunction in men with Type II diabetes mellitus. Boulton, A.J., Selam, J.L., Sweeney, M., Ziegler, D. Diabetologia (2001) [Pubmed]
  7. Psychosocial factors and complications of IDDM. The Pittsburgh Epidemiology of Diabetes Complications Study. VIII. Lloyd, C.E., Matthews, K.A., Wing, R.R., Orchard, T.J. Diabetes Care (1992) [Pubmed]
  8. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine. Gubisne-Haberle, D., Hill, W., Kazachkov, M., Richardson, J.S., Yu, P.H. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  9. Smoking, blood glucose control, and locus of control beliefs in people with type 1 diabetes mellitus. Stenström, U., Andersson, P. Diabetes Res. Clin. Pract. (2000) [Pubmed]
  10. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. Greene, D.A., Lattimer, S.A., Sima, A.A. N. Engl. J. Med. (1987) [Pubmed]
  11. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. Monnier, V.M., Vishwanath, V., Frank, K.E., Elmets, C.A., Dauchot, P., Kohn, R.R. N. Engl. J. Med. (1986) [Pubmed]
  12. Blood sugar and diabetic complications. Pirart, J., Lauvaux, J.P., Rey, W. N. Engl. J. Med. (1978) [Pubmed]
  13. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Hammes, H.P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., Lin, J., Bierhaus, A., Nawroth, P., Hannak, D., Neumaier, M., Bergfeld, R., Giardino, I., Brownlee, M. Nat. Med. (2003) [Pubmed]
  14. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Srivastava, S.K., Ramana, K.V., Bhatnagar, A. Endocr. Rev. (2005) [Pubmed]
  15. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Evans, J.L., Goldfine, I.D., Maddux, B.A., Grodsky, G.M. Endocr. Rev. (2002) [Pubmed]
  16. Identification of fructose 3-phosphate in the lens of diabetic rats. Szwergold, B.S., Kappler, F., Brown, T.R. Science (1990) [Pubmed]
  17. Oxybutynin for diabetic complications. Chideckel, E.W. JAMA (1990) [Pubmed]
  18. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. Niwa, T., Katsuzaki, T., Miyazaki, S., Miyazaki, T., Ishizaki, Y., Hayase, F., Tatemichi, N., Takei, Y. J. Clin. Invest. (1997) [Pubmed]
  19. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., Cerami, A. Science (1986) [Pubmed]
  20. Antioxidant and redox regulation of gene transcription. Sen, C.K., Packer, L. FASEB J. (1996) [Pubmed]
  21. Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes. Scheede-Bergdahl, C., Penkowa, M., Hidalgo, J., Olsen, D.B., Schjerling, P., Prats, C., Boushel, R., Dela, F. Diabetes (2005) [Pubmed]
  22. An (A-C)n dinucleotide repeat polymorphic marker at the 5' end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Ko, B.C., Lam, K.S., Wat, N.M., Chung, S.S. Diabetes (1995) [Pubmed]
  23. Cumulative glycemic exposure and microvascular complications in insulin-dependent diabetes mellitus. The glycemic threshold revisited. Orchard, T.J., Forrest, K.Y., Ellis, D., Becker, D.J. Arch. Intern. Med. (1997) [Pubmed]
  24. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Wentzel, P., Ejdesjö, A., Eriksson, U.J. Diabetes (2003) [Pubmed]
  25. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. Donohue, P.J., Alberts, G.F., Hampton, B.S., Winkles, J.A. J. Biol. Chem. (1994) [Pubmed]
  26. Effect of the renin-angiotensin system in the vascular disease of type II diabetes mellitus. Hsueh, W.A. Am. J. Med. (1992) [Pubmed]
  27. Impaired neutrophil actin assembly causes persistent CD11b expression and reduced primary granule exocytosis in Type II diabetes. Advani, A., Marshall, S.M., Thomas, T.H. Diabetologia (2002) [Pubmed]
  28. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells. Henry, D.N., Del Monte, M., Greene, D.A., Killen, P.D. J. Clin. Invest. (1993) [Pubmed]
  29. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Galiano, R.D., Tepper, O.M., Pelo, C.R., Bhatt, K.A., Callaghan, M., Bastidas, N., Bunting, S., Steinmetz, H.G., Gurtner, G.C. Am. J. Pathol. (2004) [Pubmed]
  30. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Roestenberg, P., van Nieuwenhoven, F.A., Wieten, L., Boer, P., Diekman, T., Tiller, A.M., Wiersinga, W.M., Oliver, N., Usinger, W., Weitz, S., Schlingemann, R.O., Goldschmeding, R. Diabetes Care (2004) [Pubmed]
  31. Free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and their relationships to the presence of diabetic retinopathy and glomerular hyperfiltration in insulin-dependent diabetes mellitus. Janssen, J.A., Jacobs, M.L., Derkx, F.H., Weber, R.F., van der Lely, A.J., Lamberts, S.W. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  32. Tissue-specific expression of two aldose reductase-like genes in mice: abundant expression of mouse vas deferens protein and fibroblast growth factor-regulated protein in the adrenal gland. Lau, E.T., Cao, D., Lin, C., Chung, S.K., Chung, S.S. Biochem. J. (1995) [Pubmed]
  33. Modification of proteins in vitro by physiological levels of glucose: pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions. Voziyan, P.A., Khalifah, R.G., Thibaudeau, C., Yildiz, A., Jacob, J., Serianni, A.S., Hudson, B.G. J. Biol. Chem. (2003) [Pubmed]
  34. Relationship of glycosylated hemoglobin to oral glucose tolerance. Implications for diabetes screening. Little, R.R., England, J.D., Wiedmeyer, H.M., McKenzie, E.M., Pettitt, D.J., Knowler, W.C., Goldstein, D.E. Diabetes (1988) [Pubmed]
  35. Phenotypic characteristics of early-onset autosomal-dominant type 2 diabetes unlinked to known maturity-onset diabetes of the young (MODY) genes. Doria, A., Yang, Y., Malecki, M., Scotti, S., Dreyfus, J., O'Keeffe, C., Orban, T., Warram, J.H., Krolewski, A.S. Diabetes Care (1999) [Pubmed]
  36. Cerebroprotective effects of aminoguanidine in a rodent model of stroke. Cockroft, K.M., Meistrell, M., Zimmerman, G.A., Risucci, D., Bloom, O., Cerami, A., Tracey, K.J. Stroke (1996) [Pubmed]
  37. Lipoprotein(a) concentration shows little relationship to IDDM complications in the Pittsburgh Epidemiology of Diabetes Complications Study cohort. Maser, R.E., Usher, D., Becker, D.J., Drash, A.L., Kuller, L.H., Orchard, T.J. Diabetes Care (1993) [Pubmed]
 
WikiGenes - Universities