The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions.

The activation of eosinophils by cytokines is a major event in the pathogenesis of allergic diseases. We have investigated the activation of mitogen-activated protein (MAP) kinases and their functional relevance in eosinophil differentiation, survival, degranulation, and cytokine production. IL-5 induced phosphorylation and activation of extracellular signal- regulated kinases ( ERK) and p38 MAP kinases in eosinophils. PD98059, a MAP/ ERK kinase inhibitor, blocked phosphorylation of ERK1/2 in a dose-dependent manner. SB202190, a p38 inhibitor, blocked p38-dependent phosphorylation of activating transcription factor-2. To study the importance of the MAP kinases on eosinophil differentiation, we cultured mouse bone marrow cells with IL-3 and IL-5 in the presence of the inhibitors. SB202190 dramatically inhibited eosinophil differentiation by 71%. PD98059 was less potent and reduced eosinophil differentiation by 28%. Both inhibitors marginally inhibited eosinophil survival only at the highest doses. Prolonged incubation of eosinophils with IL-5 induced significant eosinophil-derived neurotoxin release. Both PD98059 and SB202190 nearly completely inhibited (87% and 100% inhibition, respectively) IL-5- stimulated eosinophil-derived neurotoxin release in a dose-dependent manner. Next, we examined the effect of the MAP kinase inhibitors on eosinophil production of the cytokine macrophage-inflammatory protein (MIP)-1alpha. PD98059 blocked C5a- but not ionomycin- induced MIP-1alpha production (59% inhibition at 50 microM concentration). In contrast, SB202190 nearly completely inhibited (99%) C5a- induced MIP-1alpha production. Further, it blocked ionomycin-stimulated production by 66%. Our results suggest that both p38 and ERK1/2 MAP kinases play an important role in eosinophil differentiation, cytokine production, and degranulation. The p38 MAP kinase plays a greater role than ERK1/2 in eosinophil differentiation and cytokine production.[1]

References

 
WikiGenes - Universities