The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphatidylcholine activation of human heart (R)-3-hydroxybutyrate dehydrogenase mutants lacking active center sulfhydryls: site-directed mutagenesis of a new recombinant fusion protein.

(R)-3-Hydroxybutyrate dehydrogenase (BDH) is a lipid-requiring mitochondrial enzyme with a specific requirement of phosphatidylcholine (PC) for function. A plasmid has been constructed to express human heart (HH) BDH in Escherichia coli as a hexahistidine-tagged fusion protein (HH-Histag-BDH). A rapid two-step affinity purification yields active HH-Histag-BDH (and six mutants) with high specific activity ( approximately 130 micromol of NAD(+) reduced.min(-1).mg(-1)). HH-Histag-BDH has no activity in the absence of phospholipid and exhibits a specific requirement of PC for function. The HH-Histag-BDH-PC complex (and HH-BDH derived therefrom by enterokinase cleavage) has apparent Michaelis constants (K(m) values) for NAD(+), NADH, (R)-3-hydroxybutyrate (HOB), and acetoacetate (AcAc) similar to those for bovine heart or rat liver BDH. A computed structural model of HH-BDH predicts the two active center sulfhydryls to be C69 (near the adenosine moiety of NAD) and C242. With both sulfhydryls derivatized, BDH has minimal activity, but site-directed mutagenesis of C69 and/or C242 now shows that neither of these cysteines is required for PC activation or catalysis (the double mutant, C69A/C242A, is highly active with essentially normal kinetic parameters). Six cysteine mutants each have an increased K(m)(NADH) (2-6-fold) but an unchanged K(m)(NAD)+. The C242S and C69A/C242S enzymes (but not the analogous C242A mutants nor the C69A or C69S mutants) exhibit approximately 10-fold increases in K(m)(HOB) and K(m)(AcAc), reflecting an altered substrate binding site. Thus, although C242 (in the C-terminal lipid binding domain of BDH) is close to the active site, it appears to be in a hydrophobic environment and only indirectly defines the substrate binding site at the catalytic center of BDH.[1]

References

  1. Phosphatidylcholine activation of human heart (R)-3-hydroxybutyrate dehydrogenase mutants lacking active center sulfhydryls: site-directed mutagenesis of a new recombinant fusion protein. Chelius, D., Loeb-Hennard, C., Fleischer, S., McIntyre, J.O., Marks, A.R., De, S., Hahn, S., Jehl, M.M., Moeller, J., Philipp, R., Wise, J.G., Trommer, W.E. Biochemistry (2000) [Pubmed]
 
WikiGenes - Universities