The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2.

The cellular and molecular bases of platelet release by terminally differentiated megakaryocytes represent important questions in cell biology and hematopoiesis. Mice lacking the transcription factor NF-E2 show profound thrombocytopenia, and their megakaryocytes fail to produce proplatelets, the microtubule-based precursors of blood platelets. Using mRNA subtraction between normal and NF-E2-deficient megakaryocytes, cDNA was isolated encoding beta1 tubulin, the most divergent beta tubulin isoform. In NF-E2-deficient megakaryocytes, beta1 tubulin mRNA and protein are virtually absent. The expression of beta1 tubulin is exquisitely restricted to platelets and megakaryocytes, where it appears late in differentiation and localizes to microtubule shafts and coils within proplatelets. Restoring NF-E2 activity in a megakaryoblastic cell line or in NF-E2-deficient primary megakaryocytes rescues the expression of beta1 tubulin. Re-expressing beta1 tubulin in isolation does not, however, restore proplatelet formation in the defective megakaryocytes, indicating that other critical factors are required; indeed, other genes identified by mRNA subtraction also encode structural and regulatory components of the cytoskeleton. These findings provide critical mechanistic links between NF-E2, platelet formation, and selected microtubule proteins, and they also provide novel molecular insights into thrombopoiesis. (Blood. 2000;96:1366-1373)[1]


WikiGenes - Universities