The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction.

The reverse tetracycline-dependent transactivator system was employed in insulinoma INS-1 cells to achieve controlled inducible expression of hepatocyte nuclear factor-1 alpha (HNF1 alpha)-P291fsinsC, the most common mutation associated with subtype 3 of maturity-onset diabetes of the young (MODY3). Nuclear localized HNF1 alpha-P291fsinsC protein exerts its dominant-negative effects by competing with endogenous HNF1 alpha for the cognate DNA-binding site. HNF1 alpha controls multiple genes implicated in pancreatic beta-cell function and notably in metabolism- secretion coupling. In addition to reduced expression of the genes encoding insulin, glucose transporter-2, L-pyruvate kinase, aldolase B and 3-hydroxy-3-methylglutaryl coenzyme A reductase, induction of HNF1 alpha-P291fsinsC also significantly inhibits expression of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) E1 subunit mRNA and protein. OGDH enzyme activity and [(14)C]pyruvate oxidation were also reduced. In contrast, the mRNA and protein levels of mitochondrial uncoupling protein-2 were dramatically increased by HNF1 alpha-P291fsinsC induction. As predicted from this altered gene expression profile, HNF1 alpha-P291fsinsC also inhibits insulin secretory responses to glucose and leucine, correlated with impaired nutrient-evoked mitochondrial ATP production and mitochondrial membrane hyperpolarization. These unprecedented results suggest the molecular mechanism of HNF1 alpha-P291fsinsC causing beta-cell dysfunction.[1]


  1. Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. Wang, H., Antinozzi, P.A., Hagenfeldt, K.A., Maechler, P., Wollheim, C.B. EMBO J. (2000) [Pubmed]
WikiGenes - Universities