The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Increased TIMP/MMP ratio in varicose veins: a possible explanation for extracellular matrix accumulation.

Primary varicose veins are functionally characterized by venous back-flow and blood stagnation in the upright position. Dilatation and tortuosity provide evidence for progressive venous wall remodelling, with disturbance of smooth muscle cell/extracellular matrix organization. Affected areas are not uniformly distributed, some areas being hypertrophic, whereas others are atrophic or unaffected. In 12 varicose veins and ten control veins, the proteolytic enzyme/inhibitor balance which may participate in the remodelling of the venous wall was investigated. For this purpose, the presence and enzymatic activity of matrix metalloproteinases (MMP-2, MMP-9), tissue inhibitors of MMPs (TIMP-1, TIMP-2), urokinase-type (uPA) and tissue-type (tPA) plasminogen activators (PAs), and plasminogen activator inhibitor-1 (PAI-1) were quantified by western blot and gelatin or plasminogen-casein zymography. In addition, MMP-2, TIMP-1, TIMP-2, and PAI-1 levels were measured by ELISA. A high TIMP-1 level and a low MMP-2 level/activity were found in varicose veins (p<0.005), resulting in a three-fold increase in the TIMP-1/MMP-2 ratio in varicose versus control veins. Levels of PAs (uPA and tPA) as well as PAI-1 were both lower in varicose veins (p<0.005), with minimal change in the PAI/PA ratio. These results demonstrate that varicose veins are characterized by a higher than normal TIMP/MMP ratio, which may facilitate extracellular matrix accumulation in the diseased venous wall.[1]


  1. Increased TIMP/MMP ratio in varicose veins: a possible explanation for extracellular matrix accumulation. Badier-Commander, C., Verbeuren, T., Lebard, C., Michel, J.B., Jacob, M.P. J. Pathol. (2000) [Pubmed]
WikiGenes - Universities