The Chlorella hexose/H(+)-symporters.
The physiology, molecular biology, and biochemistry of the inducible hexose uptake protein of Chlorella kessleri is reviewed. The protein encoded by the HUP1 gene is the most intensively studied membrane transporter of plants. Responsible for substrate accumulation up to 1500-fold, it translocates one proton together with one hexose, and the cell invests 1 ATP per sugar transported. Kinetics suggest that substrate accumulation is mainly brought about by a large delta Km (Kminside >> Kmoutside). The HUP1 protein (534aa) consists of 12 transmembrane helices of which at least helices I, V, VII, and XI interact with the sugar during translocation and participate in lining the transport path through the membrane. The helix packing might very well be identical to the one suggested for the E. coli lac permease, although the mechanism for transport and proton coupling that has been suggested for lac permease (Kaback, 1997) certainly does not hold for the Chlorella symporter; both are distantly related members, however, of the MFS-family of transporters. HUP1 has been functionally expressed in Schizosaccharomyces pombe, Saccharomyces cerevisiae, Escherichia coli, Volvox carteri, and in Xenopus oocytes.[1]References
- The Chlorella hexose/H(+)-symporters. Tanner, W. Int. Rev. Cytol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg