The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chlorella


High impact information on Chlorella

  • Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region [6].
  • Paramecium bursaria Chlorella virus type 1 (PBCV-1) is a very large, icosahedral virus containing an internal membrane enclosed within a glycoprotein coat consisting of pseudohexagonal arrays of trimeric capsomers [7].
  • In contrast, fungi and Chlorella virus encode monofunctional guanylyltransferase polypeptides that lack triphosphatase and methyltransferase activities [8].
  • To circumvent this problem, the hexose/H+ symporter (HUP1) gene from the unicellular alga Chlorella was placed under the control of the constitutive Volvox beta-tubulin promoter [9].
  • Km values for glucose, 6-deoxyglucose, and 3-O-methylglucose of 1.5 x 10(-5) M, 2.7 x 10(-4) M, and 1.0 x 10(-3) M, respectively, were identical in Chlorella and in S. pombe cells transformed with Chlorella cDNA and approximately 100-fold lower than those of the endogenous transport system of S. pombe [10].

Chemical compound and disease context of Chlorella


Biological context of Chlorella


Anatomical context of Chlorella


Associations of Chlorella with chemical compounds


Gene context of Chlorella

  • Sequence analysis of the 330-kb chlorella virus PBCV-1 genome revealed an open-reading frame, A94L, that encodes a protein with significant amino acid identity to Glycoside Hydrolase Family 16 beta-1,3-glucanases [31].
  • The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron [32].
  • Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris [33].
  • We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells [34].
  • We report that the A103R protein of Chlorella virus PBCV-1 is an mRNA capping enzyme that catalyzes the transfer of GMP from GTP to the 5' diphosphate end of RNA [35].

Analytical, diagnostic and therapeutic context of Chlorella

  • Assimilatory nitrate reductase (EC NADH:nitrate oxidoreductase) from Chlorella vulgaris purified by affinity chromatography was found to be homogeneous as judged by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel and by analytical ultracentrifugal techniques [36].
  • Gel chromatography experiments over a wide range of protein concentrations showed that Chlorella nitrate reductase is a nonassociating protein with a Stokes radius of 81 A. Sedimentation equilibrium of nitrate reductase in H2O-D2O solvents yielded a partial specific volume of 0.800 +/- 0.014 (n = 12) and a Mr = 360,000 +/- 25,000 [37].
  • Molecular cloning and characterization of the gene encoding the adenine methyltransferase M.CviRI from Chlorella virus XZ-6E [38].
  • Deletion analysis of the 298 amino acid Chlorella virus DNA ligase indicates that motif VI plays a critical role in the reaction of ligase with ATP to form ligase-adenylate, but is dispensable for the two subsequent steps in the ligation pathway; DNA-adenylate formation and strand closure [39].
  • The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O2- by Chlorella sorokiniana [1].


  1. A mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite. Rabinowitch, H.D., Rosen, G.M., Fridovich, I. Free Radic. Biol. Med. (1989) [Pubmed]
  2. Sulfate-reducing pathway in Escherichia coli involving bound intermediates. Tsang, M.L., Schiff, J.A. J. Bacteriol. (1976) [Pubmed]
  3. Characterization of the major capsid protein and cloning of its gene from algal virus PBCV-1. Graves, M.V., Meints, R.H. Virology (1992) [Pubmed]
  4. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6. Yoon, K.S., Ishii, M., Igarashi, Y., Kodama, T. J. Bacteriol. (1996) [Pubmed]
  5. Chlorella virus PBCV-1 encodes a functional homospermidine synthase. Kaiser, A., Vollmert, M., Tholl, D., Graves, M.V., Gurnon, J.R., Xing, W., Lisec, A.D., Nickerson, K.W., Van Etten, J.L. Virology (1999) [Pubmed]
  6. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. Higashiyama, T., Noutoshi, Y., Fujie, M., Yamada, T. EMBO J. (1997) [Pubmed]
  7. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Nandhagopal, N., Simpson, A.A., Gurnon, J.R., Yan, X., Baker, T.S., Graves, M.V., Van Etten, J.L., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Phylogeny of mRNA capping enzymes. Wang, S.P., Deng, L., Ho, C.K., Shuman, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. Hallmann, A., Sumper, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe. Sauer, N., Caspari, T., Klebl, F., Tanner, W. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  11. Characterization of DNA-binding proteins and protein kinase activities in Chlorella virus CVK2. Yamada, T., Furukawa, S., Hamazaki, T., Songsri, P. Virology (1996) [Pubmed]
  12. Cloning and sequencing the cytosine methyltransferase gene M. CviJI from Chlorella virus IL-3A. Shields, S.L., Burbank, D.E., Grabherr, R., van Etten, J.L. Virology (1990) [Pubmed]
  13. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Pugh, N., Ross, S.A., ElSohly, H.N., ElSohly, M.A., Pasco, D.S. Planta Med. (2001) [Pubmed]
  14. On the mechanism of glycolate synthesis by Chromatium and Chlorella. Lorimer, G.H., Osmond, C.B., Akazawa, T., Asami, S. Arch. Biochem. Biophys. (1978) [Pubmed]
  15. Metal requirements of the enzymes catalyzing conversion of glutamate to delta-aminolevulinic acid in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Mayer, S.M., Rieble, S., Beale, S.I. Arch. Biochem. Biophys. (1994) [Pubmed]
  16. Expression and characterization of the heme-binding domain of Chlorella nitrate reductase. Cannons, A.C., Barber, M.J., Solomonson, L.P. J. Biol. Chem. (1993) [Pubmed]
  17. A single amino acid change restores DNA cytosine methyltransferase activity in a cloned chlorella virus pseudogene. Zhang, Y., Nelson, M., Van Etten, J.L. Nucleic Acids Res. (1992) [Pubmed]
  18. The Chlorella hexose/H(+)-symporters. Tanner, W. Int. Rev. Cytol. (2000) [Pubmed]
  19. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Thies, F., Backhaus, T., Bossmann, B., Grimme, L.H. Plant Physiol. (1996) [Pubmed]
  20. Control of isocitrate lyase synthesis in Chlorella fusca var. vacuolata. The basal activity of the enzyme and the kinetics of induction. Thurston, C.F. Biochem. J. (1977) [Pubmed]
  21. vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2. Sugimoto, I., Onimatsu, H., Fujie, M., Usami, S., Yamada, T. FEBS Lett. (2004) [Pubmed]
  22. Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Morita, K., Ogata, M., Hasegawa, T. Environ. Health Perspect. (2001) [Pubmed]
  23. Nucleotide sequence of the plastid genes for apocytochrome b6 (petB) and subunit IV of the cytochrome b6-f complex (petD) from the green alga Chlorella protothecoides: lack of introns. Reimann, A., Kück, U. Plant Mol. Biol. (1989) [Pubmed]
  24. Enhanced resistance against Escherichia coli infection by subcutaneous administration of the hot-water extract of Chlorella vulgaris in cyclophosphamide-treated mice. Konishi, F., Tanaka, K., Kumamoto, S., Hasegawa, T., Okuda, M., Yano, I., Yoshikai, Y., Nomoto, K. Cancer Immunol. Immunother. (1990) [Pubmed]
  25. Response of the blood cell of the American horseshoe crab, Limulus polyphemus, to a lipopolysaccharide-like molecule from the green alga Chlorella. Conrad, M.L., Pardy, R.L., Armstrong, P.B. Biol. Bull. (2001) [Pubmed]
  26. Glucose induces two amino acid transport systems in Chlorella. Cho, B.H., Sauer, N., Komor, E., Tanner, W. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  27. Greatly decreased susceptibility of nonmetabolizing cells towards detergents. Komor, E., Weber, H., Tanner, W. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  28. The role of the essential sulfhydryl group in assimilatory NADH: nitrate reductase of Chlorella. Barber, M.J., Solomonson, L.P. J. Biol. Chem. (1986) [Pubmed]
  29. In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa. Schubert, H., Kroon, B.M., Matthijs, H.C. J. Biol. Chem. (1994) [Pubmed]
  30. Characterization of a novel cis-syn and trans-syn-II pyrimidine dimer glycosylase/AP lyase from a eukaryotic algal virus, Paramecium bursaria chlorella virus-1. McCullough, A.K., Romberg, M.T., Nyaga, S., Wei, Y., Wood, T.G., Taylor, J.S., Van Etten, J.L., Dodson, M.L., Lloyd, R.S. J. Biol. Chem. (1998) [Pubmed]
  31. Characterization of a beta-1,3-glucanase encoded by chlorella virus PBCV-1. Sun, L., Gurnon, J.R., Adams, B.J., Graves, M.V., Van Etten, J.L. Virology (2000) [Pubmed]
  32. The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron. Kapoor, M., Wakasugi, T., Yoshinaga, K., Sugiura, M. Mol. Gen. Genet. (1996) [Pubmed]
  33. Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. Hasegawa, T., Matsuguchi, T., Noda, K., Tanaka, K., Kumamoto, S., Shoyama, Y., Yoshikai, Y. Int. Immunopharmacol. (2002) [Pubmed]
  34. DNA methyltransferase induced by PBCV-1 virus infection of a Chlorella-like green alga. Xia, Y.N., Van Etten, J.L. Mol. Cell. Biol. (1986) [Pubmed]
  35. Expression and characterization of an RNA capping enzyme encoded by Chlorella virus PBCV-1. Ho, C.K., Van Etten, J.L., Shuman, S. J. Virol. (1996) [Pubmed]
  36. Physical studies on assimilatory nitrate reductase from Chlorella vulgaris. Giri, L., Ramadoss, C.S. J. Biol. Chem. (1979) [Pubmed]
  37. Quaternary structure of assimilatory NADH:nitrate reductase from Chlorella. Howard, W.D., Solomonson, L.P. J. Biol. Chem. (1982) [Pubmed]
  38. Molecular cloning and characterization of the gene encoding the adenine methyltransferase M.CviRI from Chlorella virus XZ-6E. Stefan, C., Xia, Y.N., Van Etten, J.L. Nucleic Acids Res. (1991) [Pubmed]
  39. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Sriskanda, V., Shuman, S. Nucleic Acids Res. (1998) [Pubmed]
WikiGenes - Universities