The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neutral/alkaline and acid ceramidase activities are actively released by murine endothelial cells.

Ceramidases (CDase(s)) play a key role in sphingolipid metabolism by hydrolyzing ceramide into sphingosine. Here we report that murine endothelial cells, macrophages, and human fibroblasts are all able to release acid as well as neutral/alkaline CDase activities in the culture medium. Endothelial cells were characterized by the highest specific activity of cellular as well as secreted CDases. The release of both enzymatic activities was reduced by protein synthesis inhibitor cycloheximide but was unaffected by the blocking of RNA transcription with actinomycin D. The discharge of acid and neutral/alkaline CDases was also diminished by brefeldin A, a fungal metabolite which disrupts Golgi apparatus. Remarkably, treatment of endothelial cells with bradykinin resulted in a significant increase of neutral/alkaline but not acid CDase release. This report represents the first evidence for the existence of constitutive and regulated release of CDase activities by endothelial cells. In view of the known ability of these cells to secrete sphingomyelinase, this finding suggests that CDase may participate in extracellular sphingomyelin metabolism which is presently known to have a role in atherogenesis and could be involved in other physiological or pathological events.[1]

References

  1. Neutral/alkaline and acid ceramidase activities are actively released by murine endothelial cells. Romiti, E., Meacci, E., Tani, M., Nuti, F., Farnararo, M., Ito, M., Bruni, P. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
 
WikiGenes - Universities