The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Management of early renal anaemia: diagnostic work-up, iron therapy, epoetin therapy.

Effective management of early anaemia in the course of chronic renal insufficiency requires the following: (i) implementing an efficient diagnostic strategy to exclude common contributing factors; (ii) initiating epoetin therapy for the majority of patients; for and (iii) ensuring adequate iron supply erythropoiesis. Diagnostic inquiry is warranted whenever the haemoglobin concentration is below the normal range adjusted for age and gender. The most efficient diagnostic approach is to assume erythropoietin deficiency, exclude iron deficiency, and pursue further diagnostic tests only when red-cell indices are abnormal or when leukopenia or thrombocytopenia are also present. Macrocytosis should prompt an inquiry into alcoholism, B12 deficiency, or folate deficiency. Microcytosis suggests iron deficiency or thalassaemia. Associated cytopenias raise the possibility of alcohol toxicity, pernicious anaemia, malignancy, or myelodysplastic syndrome. Epoetin therapy is warranted whenever the haemoglobin concentration has fallen below 10.0 g/dl. To initiate therapy prior to dialysis, epoetin should be administered at an average dose of 100 IU/kg/week (80-120 IU/kg/week, 50-150 IU/kg/ week) by subcutaneous injection. Haemoglobin concentration should be monitored every 2 weeks and the epoetin dose adjusted by increments or decrements of 25% to maintain a rate of rise of haemoglobin concentration of 0.2-0.6 g/dl (0.3 0.6 g/dl/week, 0.2-0.5 g/dl/week). When the target range is achieved, the dose of epoetin should be continually adjusted to maintain a stable haemoglobin concentration. Transferrin saturation and ferritin concentration should be monitored monthly, and sufficient iron provided to maintain transferrin saturation above 20%. The lower the haemoglobin concentration, the greater the likelihood that future intravenous iron will be required. Oral iron supplements should be avoided, since they are costly, ineffective, and troublesome to patients. Finally, a blunted therapeutic response to epoetin therapy provides important diagnostic information and gnostic inquiry.[1]

References

 
WikiGenes - Universities