The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Sporulation in D-glucosamine auxotrophs of Saccharomyces cerevisiae: meiosis with defective ascospore wall formation.

Mutants that require exogenous D-glucosamine for growth were isolated from Saccharomyces cerevisiae X2180-1A after ethyl methane sulfonate mutagenesis. Class A auxotrophs fail to grow on yeast extract-peptone-dextrose and minimal media, whereas class B auxotrophs grow on minimal medium and readily revert to grow on yeast extract-peptone-dextrose medium. Class B auxotrophs are suppressible by a class of suppressors distinct from nonsense suppressors, and their properties suggest that they are defective in a regulatory function. All 23 mutants studied were recessive and allelic, and they define a new gene designated gcn1. An analysis of a class A auxotroph revealed that it lacked L-glutamine:D-fructose 6-phosphate amidotransferase (EC activity and indicates that GCN1 codes the amino acid sequence of this enzyme. The finding that all mutants were allelic indicates that the amidotransferase is the only enzyme responsible for D-glucosamine synthesis in S. cerevisiae. The occurrence of allelic complementation and media-conditional mutants suggests that the amidotransferase is a multimeric enzyme with an activity subject to metabolic control. Diploids homozygous for gcn1 fail to complete sporulation. They proceed through meiosis normally, as judged by the occurrence of meiotic recombination, the production of haploid nuclei, and the formation of multinucleate cells visible after Giemsa staining. However, the formation of glusulase-resistant ascospores is blocked, and deformed spores lacking the electron-dense outer layer characteristic of the normal spore wall are observed by electron microscopy. Cells that acquire the ability to synthesize D-glucosamine, because of gene conversion during meiosis, complete sporulation in a normal fashion. Thus, the GCN1 gene product appears to be synthesized late in sporulation and may prove to be a useful developmental landmark for the termination of ascospore development.[1]


WikiGenes - Universities