The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.

Isolated membrane vesicles from Escherichia coli B grown on DL-alanine and glycerol carry out amino acid active transport coupled to a membrane-bound D-alanine dehydrogenase (Kaczorowski, G., Shaw, L., Fuentes, M., and Walsh, C. (1975) J. Biol. Chem. 250, 2855). Certain L-amino acids can also energize solute transport by conversion to their D isomers via an alanine reacemase. Both D-chloroalanine and L-chloroalanine initially drive amino acid and methyl-beta-thiogalactose uptake. The D isomer however causes rapid inactivation of both dehydrogenase-coupled transport and the phosphotransferase system. Transport functions can be protected by dithiothreitol which is postulated to act as a scavenging nucleophile. This inactivation by the D isomer is time-dependent and irreversible not only for proline transport but also for alpha-methylglucoside uptake. Unlike the D isomer, beta-chloro-L-alanine does not inactivate transport. L-Chloroalanine is not racemized to the D isomer but rather undergoes a racemase catalyzed beta elimination of chloride ion to produce pyruvate. Pyruvate can subsequently be oxidized to stimulate active transport. This pyridoxal phosphate-dependent racemase is inactivated by low concentrations of D-chloroalanine but the L isomer can only cause inactivation at a 40-fold higher concentration and longer times of exposure. The D-alanine dehydrogenase-catalyzed oxidation product of D-chloroalanine is chloropyruvate, and this keto acid is hypothesized to be the inactivating species of transport for the following reasons. Chloropyruvate has been isolated from D-chloroalanine oxidation but not from oxidation of the L isomer. Chlorolactate which can be oxidized to chloropyruvate (via membrane-bound lactate dehydrogenases) also causes inactivation of transport in E. coli K-12 membrane vesicles. Mutants having diminished lactate dehydrogenase activity show a slower rate of inactivation with chlorolactate. Moreover, synthetic chloropyruvate irreversibly inactivates both active transport of proline and phosphotransferase system-dependent group translocation of alpha-methylglucoside. The effects of D- and L-chloroalanine and chlorolactate on transport in membrane vesicles are also seen in whole cells.[1]

References

 
WikiGenes - Universities