The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Me alpha-Glc     (2R,3S,4S,5R,6S)-2- (hydroxymethyl)-6...

Synonyms: SureCN50473, CHEMBL131853, CPD-3582, M9376_SIGMA, CHEBI:320061, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Methyl alpha-D-glucopyranoside


High impact information on Methyl alpha-D-glucopyranoside

  • We show that Mlc binds specifically to membrane fractions which carry PtsG and that excess Mlc can inhibit Enzyme IICB(Glc) phosphorylation by the general PTS proteins and also Enzyme IICB(Glc)-mediated phosphorylation of alpha-methylglucoside [6].
  • Equilibrium dialysis with alpha-methyl D-glucoside and subsequent Scatchard plot analysis revealed an association constant (Ka) of 1.2 X 10(3) liters/mol and a valence of 1 [7].
  • TRH caused a 2-fold increase in secretion of [3H]mannose-labeled TSH glycopeptides due almost exclusively to a specific increase in structures that bound to ConA-Sepharose and eluted with 10mM alpha-methylglucoside, corresponding to biantennary complex or unusual hybrid species [8].
  • Although it showed a relatively neutral pH optimum, the taurodeoxycholate-activated galactosylceramidase is not a nonlysosomal "neutral" beta-galactosidase, because unlike the latter, it was adsorbed to Concanavalin A-Sepharose after solubilization with 0.5% sodium taurodeoxycholate and was eluted by alpha-methylmannoside or alpha-methylglucoside [9].
  • Consistently, the cell membrane remains intact after T1 infection: proteins, like beta-galactoside, amino acids, and alpha-methylglucoside cannot passively penetrate the membrane of T1-infected cells [10].

Chemical compound and disease context of Methyl alpha-D-glucopyranoside


Biological context of Methyl alpha-D-glucopyranoside


Anatomical context of Methyl alpha-D-glucopyranoside


Associations of Methyl alpha-D-glucopyranoside with other chemical compounds


Gene context of Methyl alpha-D-glucopyranoside


Analytical, diagnostic and therapeutic context of Methyl alpha-D-glucopyranoside


  1. Active transport of glucose and alpha-methylglucoside in the cyanobacterium Plectonema boryanum. Raboy, B., Padan, E. J. Biol. Chem. (1978) [Pubmed]
  2. Transport in bacteriophage P22-infected Salmonella typhimurium. Khandekar, P.S., Burma, D.P., Taneja, S.K., Chakravorty, M. J. Virol. (1975) [Pubmed]
  3. Rate maintenance of cell division in Escherichia coli B/r: analysis of a simple nutritional shift-down. Zaritsky, A., Helmstetter, C.E. J. Bacteriol. (1992) [Pubmed]
  4. Effect of concanavalin A on vesicular stomatitis virus maturation. Cartwright, B. J. Gen. Virol. (1977) [Pubmed]
  5. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases. Fehr, S., Richter, D. J. Bacteriol. (1981) [Pubmed]
  6. Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. Lee, S.J., Boos, W., Bouché, J.P., Plumbridge, J. EMBO J. (2000) [Pubmed]
  7. Mechanism of human lymphocyte stimulation by concanavalin A: role of valence and surface binding sites. Wands, J.R., Podolsky, D.K., Isselbacher, K.J. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  8. Effect of thyrotropin-releasing hormone on the carbohydrate structure of secreted mouse thyrotropin. Analysis by lectin affinity chromatography. Gesundheit, N., Fink, D.L., Silverman, L.A., Weintraub, B.D. J. Biol. Chem. (1987) [Pubmed]
  9. A taurodeoxycholate-activated galactosylceramidase in the murine intestine. Kobayashi, T., Suzuki, K. J. Biol. Chem. (1981) [Pubmed]
  10. Development of Escherichia coli virus T1. The role of the proton-motive force. Wagner, E.F., Ponta, H., Schweiger, M. J. Biol. Chem. (1980) [Pubmed]
  11. Significance of the inactivation of transport in thermal death of Escherichia coli. Grau, F.H. Appl. Environ. Microbiol. (1978) [Pubmed]
  12. Phosphoenolpyruvate-dependent phosphorylation of alpha-methylglucoside in Streptococcus sanguis ATCC 10556. Vadeboncoeur, C., Trahan, L. Can. J. Microbiol. (1983) [Pubmed]
  13. Effects of colicins K and E1 on the glucose phosphotransferase system. Jetten, A.M. Biochim. Biophys. Acta (1976) [Pubmed]
  14. Isolation of Yersinia enterocolitica and related species from river water. Massa, S., Cesaroni, D., Poda, G., Trovatelli, L.D. Zentralbl. Mikrobiol. (1988) [Pubmed]
  15. Transepithelial transport in cell culture: bioenergetics of Na-, D-glucose-coupled transport. Sanders, M.J., Simon, L.M., Misfeldt, D.S. J. Cell. Physiol. (1983) [Pubmed]
  16. Effects of metabolic intermediates on sugar and amino acid uptake in rabbit renal tubules and brush border membranes. Kippen, I., Klinenberg, J.R., Wright, E.M. J. Physiol. (Lond.) (1980) [Pubmed]
  17. Characteristics of solubilized human-somatotropin-binding protein from the liver of pregnant rabbits. Tsushima, T., Sasaki, N., Imai, Y., Matsuzaki, F., Friesen, H.G. Biochem. J. (1980) [Pubmed]
  18. Energy-dependent degradation of lambda O protein in Escherichia coli. Bejarano, I., Klemes, Y., Schoulaker-Schwarz, R., Engelberg-Kulka, H. J. Bacteriol. (1993) [Pubmed]
  19. Chemoattractants elicit methylation of specific polypeptides in Spirochaeta aurantia. Kathariou, S., Greenberg, E.P. J. Bacteriol. (1983) [Pubmed]
  20. Concanavalin A binding to membranes of the Golgi apparatus and resultant modification of galactosyltransferase activity. Young, M.E., Moscarello, M.A., Riordan, J.R. J. Biol. Chem. (1976) [Pubmed]
  21. Interaction of thyroid peroxidase with concanavalin A covalently coupled to agarose. Neary, J.T., Koepsell, D., Davidson, B., Armstrong, A., Strout, H.V., Soodak, M., Maloof, F. J. Biol. Chem. (1977) [Pubmed]
  22. Hexose transport in the apical and basolateral membranes of enterocytes in chickens adapted to high and low NaCl intakes. Garriga, C., Moretó, M., Planas, J.M. J. Physiol. (Lond.) (1999) [Pubmed]
  23. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum. Brown, P.D., Sepúlveda, F.V. J. Physiol. (Lond.) (1985) [Pubmed]
  24. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine. Kaczorowski, G., Shaw, L., Laura, R., Walsh, C. J. Biol. Chem. (1975) [Pubmed]
  25. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. Harwood, J.P., Gazdar, C., Prasad, C., Peterkofsky, A., Curtis, S.J., Epstein, W. J. Biol. Chem. (1976) [Pubmed]
  26. Sugar transport in the LLC-PK1 renal epithelial cell line: similarity to mammalian kidney and the influence of cell density. Mullin, J.M., Weibel, J., Diamond, L., Kleinzeller, A. J. Cell. Physiol. (1980) [Pubmed]
  27. Synthesis and biologic evaluation of (11)c-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters. Bormans, G.M., Van Oosterwyck, G., De Groot, T.J., Veyhl, M., Mortelmans, L., Verbruggen, A.M., Koepsell, H. J. Nucl. Med. (2003) [Pubmed]
  28. Coextraction of thrombomodulin and tissue factor from human placenta: effects of concanavalin A and phospholipid environment on activity. Freyssinet, J.M., Brami, B., Gauchy, J., Cazenave, J.P. Thromb. Haemost. (1986) [Pubmed]
  29. Characterization of phosphoramidon-sensitive metalloproteinases with endothelin-converting enzyme activity in porcine lung membrane. Sawamura, T., Shinmi, O., Kishi, N., Sugita, Y., Yanagisawa, M., Goto, K., Masaki, T., Kimura, S. Biochim. Biophys. Acta (1993) [Pubmed]
  30. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. Kühnau, S., Reyes, M., Sievertsen, A., Shuman, H.A., Boos, W. J. Bacteriol. (1991) [Pubmed]
  31. Isolation and characterization of cAMP suppressor mutants of Escherichia coli K12. Melton, T., Snow, L.L., Freitag, C.S., Dobrogosz, W.J. Mol. Gen. Genet. (1981) [Pubmed]
  32. Purification of human urine colony-stimulating factor by affinity chromatography. Waheed, A., Shadduck, R.K. Exp. Hematol. (1989) [Pubmed]
  33. Alterations in the glycosylation of secreted thyrotropin during ontogenesis. Analysis of sialylated and sulfated oligosaccharides. Gyves, P.W., Gesundheit, N., Stannard, B.S., DeCherney, G.S., Weintraub, B.D. J. Biol. Chem. (1989) [Pubmed]
  34. Dietary carbohydrate and fat independently modulate disaccharidase activities in rat jejunum. Goda, T., Takase, S. J. Nutr. (1994) [Pubmed]
  35. An improved method for the purification of rat serum albumin: removal of contaminants by concanavalin A-Sepharose. Ikehara, Y., Oda, K., Kato, K. J. Biochem. (1977) [Pubmed]
  36. Effects of dibutyryl cyclic AMP on the transport of alpha-methyl-D-glucoside and alpha-aminoisobutyric acid in separated tubules and brush border membranes from rabbit kidney. Kippen, I., Hirayama, B., Klinenberg, J.R., Wright, E.M. Biochim. Biophys. Acta (1979) [Pubmed]
WikiGenes - Universities