The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase.

Nitrilases (nitrile aminohydrolases, EC ) are enzymes that catalyze the hydrolysis of nitriles to the corresponding carbon acids. Among the four known nitrilases of Arabidopsis thaliana, the isoform NIT4 is the most divergent one, and homologs of NIT4 are also known from species not belonging to the Brassicaceae like Nicotiana tabacum and Oryza sativa. We expressed A. thaliana NIT4 as hexahistidine tag fusion protein in Escherichia coli. The purified enzyme showed a strong substrate specificity for beta-cyano-l-alanine (Ala(CN)), an intermediate product of cyanide detoxification in higher plants. Interestingly, not only aspartic acid but also asparagine were identified as products of NIT4-catalyzed Ala(CN) hydrolysis. Asn itself was no substrate for NIT4, indicating that it is not an intermediate but one of two reaction products. NIT4 therefore has both nitrilase and nitrile hydratase activity. Several lines of evidence indicate that the catalytic center for both reactions is the same. The NIT4 homologs of N. tabacum were found to catalyze the same reactions and protein extracts of A. thaliana, N. tabacum and Lupinus angustifolius also converted Ala(CN) to Asp and Asn in vitro. NIT4 may play a role in cyanide detoxification during ethylene biosynthesis because extracts from senescent leaves of A. thaliana showed higher Ala(CN) hydratase/nitrilase activities than extracts from nonsenescent tissue.[1]

References

 
WikiGenes - Universities