The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Oryza sativa

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Oryza sativa

  • Consistent with this suggestion is our finding that the plant Oryza sativa methionyl-tRNA synthetase, expressed in Escherichia coli, catalyzes conversion of Hcy to Hcy-thiolactone [1].
  • Exposure of seedlings of a chilling-sensitive variety of rice (Oryza sativa L. cv. Wasetoittu) to water stress (0.5 M mannitol, 30 min) at room temperature induced a degree of chilling resistance [2].
  • Genetically engineered rice (Oryza sativa L.) with the ability to synthesize glycinebetaine was established by introducing the codA gene for choline oxidase from the soil bacterium Arthrobacter globiformis [3].
  • Chemo-attraction was observed in Nostoc strains 8964:3 and PCC 73102 towards exudate or crushed extract of the natural hosts Gunnera manicata, Cycas revoluta and Blasia pusilla, and the nonhost plants Trifolium repens, Arabidopsis thaliana and Oryza sativa [4].
  • Comparative toxicity of thiobencarb and deschlorothiobencarb to rice (Oryza sativa) [5].

High impact information on Oryza sativa

  • The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family [6].
  • Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide [7].
  • Protein-sorting mechanisms in rice (Oryza sativa) endosperm were studied with a green fluorescent protein (GFP) fused to different segments of rice alpha-globulin, a monomeric, ABC-containing storage protein [8].
  • The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [9].
  • To investigate this hypothesis, we used heterologous expression in Drosophila Schneider 2 (S2) cells to systematically analyze the functions of the gene products of a group of Csl genes from Arabidopsis and rice (Oryza sativa L.), including members from five Csl gene families (CslA, CslC, CslD, CslE, and CslH) [10].

Chemical compound and disease context of Oryza sativa

  • Purification and characterization of two ascorbate peroxidases of rice (Oryza sativa L.) expressed in Escherichia coli [11].
  • Xanthomonas oryzae pv. oryzae, bacterial blight pathogen of rice (Oryza sativa) was treated with phenol (monohydroxy benzene) and its effects on the morphology and cytological changes of the bacterium were studied [12].
  • To elucidate the role of "anaerobic proteins" synthesized in plant cell under anoxia, the synthesis of these proteins was inhibited in rice (Oryza sativa L.) coleoptiles and leaves by cycloheximide in the course of their anaerobic incubation [13].

Biological context of Oryza sativa


Anatomical context of Oryza sativa


Associations of Oryza sativa with chemical compounds

  • A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I [24].
  • However, in the Oryza sativa (rice) basic chitinase, this position is occupied by a phenylalanine [25].
  • We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs [26].
  • Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene [27].
  • A chimeric gene encoding sunflower seed albumin (SSA), one of the most sulfur-rich seed storage proteins identified so far, was introduced into rice (Oryza sativa) in order to modify cysteine and methionine content of the seed [28].

Gene context of Oryza sativa

  • Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans [29].
  • The biochemical and cell cycle-dependent properties of proliferating cell nuclear antigen (OsPCNA) and flap endonuclease-1 (OsFEN-1) were characterized from rice (Oryza sativa) [30].
  • A bacterial-type PEPC gene was also identified in rice (Oryza sativa), stated as Osppc-b, therefore showing the presence of this type of PEPC in monocots [31].
  • Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites [32].
  • We succeeded in isolating both genes for UV-DDB subunits from rice (Oryza sativa cv. Nipponbare), designated as OsUV-DDB1 and OsUV-DDB2 [33].

Analytical, diagnostic and therapeutic context of Oryza sativa


  1. Metabolism of homocysteine-thiolactone in plants. Jakubowski, H., Guranowski, A. J. Biol. Chem. (2003) [Pubmed]
  2. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Takahashi, R., Joshee, N., Kitagawa, Y. Plant Mol. Biol. (1994) [Pubmed]
  3. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Sakamoto, A., Alia, n.u.l.l., Murata, N., Murata, A. Plant Mol. Biol. (1998) [Pubmed]
  4. Cyanobacterial chemotaxis to extracts of host and nonhost plants. Nilsson, M., Rasmussen, U., Bergman, B. FEMS Microbiol. Ecol. (2006) [Pubmed]
  5. Comparative toxicity of thiobencarb and deschlorothiobencarb to rice (Oryza sativa). Palumbo, A.J., TenBrook, P.L., Phipps, A., Tjeerdema, R.S. Bulletin of environmental contamination and toxicology. (2004) [Pubmed]
  6. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H., Matsuoka, M. EMBO J. (1999) [Pubmed]
  7. cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J., Luo, D., Long, Y., Zhong, Y., Liu, Y.G. Plant Cell (2006) [Pubmed]
  8. The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Kawagoe, Y., Suzuki, K., Tasaki, M., Yasuda, H., Akagi, K., Katoh, E., Nishizawa, N.K., Ogawa, M., Takaiwa, F. Plant Cell (2005) [Pubmed]
  9. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., Hirano, H.Y. Plant Cell (2004) [Pubmed]
  10. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Liepman, A.H., Wilkerson, C.G., Keegstra, K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Purification and characterization of two ascorbate peroxidases of rice (Oryza sativa L.) expressed in Escherichia coli. Lu, Z., Takano, T., Liu, S. Biotechnol. Lett. (2005) [Pubmed]
  12. Effect of phenol on ultra structure and plasmid DNA of Xanthomonas oryzae pv. oryzae. Mohan, N., Mahadevan, A. Indian J. Exp. Biol. (2003) [Pubmed]
  13. Blocking of anaerobic protein synthesis destabilizes dramatically plant mitochondrial membrane ultrastructure. Vartapetian, B.B., Poljakova, L.I. Biochem. Mol. Biol. Int. (1994) [Pubmed]
  14. Interaction of a gibberellin-induced factor with the upstream region of an alpha-amylase gene in rice aleurone tissue. Ou-Lee, T.M., Turgeon, R., Wu, R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  15. Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Zarembinski, T.I., Theologis, A. Mol. Biol. Cell (1993) [Pubmed]
  16. Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). Choi, M.S., Kim, M.C., Yoo, J.H., Moon, B.C., Koo, S.C., Park, B.O., Lee, J.H., Koo, Y.D., Han, H.J., Lee, S.Y., Chung, W.S., Lim, C.O., Cho, M.J. J. Biol. Chem. (2005) [Pubmed]
  17. The GATA family of transcription factors in Arabidopsis and rice. Reyes, J.C., Muro-Pastor, M.I., Florencio, F.J. Plant Physiol. (2004) [Pubmed]
  18. Molecular characterization of cDNA encoding for adenylate kinase of rice (Oryza sativa L.). Kawai, M., Kidou, S., Kato, A., Uchimiya, H. Plant J. (1992) [Pubmed]
  19. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Satoh, H., Nishi, A., Yamashita, K., Takemoto, Y., Tanaka, Y., Hosaka, Y., Sakurai, A., Fujita, N., Nakamura, Y. Plant Physiol. (2003) [Pubmed]
  20. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Hirano, H.Y., Eiguchi, M., Sano, Y. Mol. Biol. Evol. (1998) [Pubmed]
  21. A rice membrane calcium-dependent protein kinase is induced by gibberellin. Abo-el-Saad, M., Wu, R. Plant Physiol. (1995) [Pubmed]
  22. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Taylor, N.L., Heazlewood, J.L., Day, D.A., Millar, A.H. Plant Physiol. (2004) [Pubmed]
  23. Developing prolamine protein bodies are associated with the cortical cytoskeleton in rice endosperm cells. Muench, D.G., Chuong, S.D., Franceschi, V.R., Okita, T.W. Planta (2000) [Pubmed]
  24. A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I. Usui, Y., Nakase, M., Hotta, H., Urisu, A., Aoki, N., Kitajima, K., Matsuda, T. J. Biol. Chem. (2001) [Pubmed]
  25. Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Verburg, J.G., Smith, C.E., Lisek, C.A., Huynh, Q.K. J. Biol. Chem. (1992) [Pubmed]
  26. Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides. Langeveld, S.M., Vennik, M., Kottenhagen, M., Van Wijk, R., Buijk, A., Kijne, J.W., de Pater, S. Plant Physiol. (2002) [Pubmed]
  27. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Van Der Straeten, D., Zhou, Z., Prinsen, E., Van Onckelen, H.A., Van Montagu, M.C. Plant Physiol. (2001) [Pubmed]
  28. The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Hagan, N.D., Upadhyaya, N., Tabe, L.M., Higgins, T.J. Plant J. (2003) [Pubmed]
  29. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Lin, S.J., Culotta, V.C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  30. Characterization of plant proliferating cell nuclear antigen (PCNA) and flap endonuclease-1 (FEN-1), and their distribution in mitotic and meiotic cell cycles. Kimura, S., Suzuki, T., Yanagawa, Y., Yamamoto, T., Nakagawa, H., Tanaka, I., Hashimoto, J., Sakaguchi, K. Plant J. (2001) [Pubmed]
  31. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Sánchez, R., Cejudo, F.J. Plant Physiol. (2003) [Pubmed]
  32. Intron loss and gain during evolution of the catalase gene family in angiosperms. Frugoli, J.A., McPeek, M.A., Thomas, T.L., McClung, C.R. Genetics (1998) [Pubmed]
  33. Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues. Ishibashi, T., Kimura, S., Yamamoto, T., Furukawa, T., Takata, K., Uchiyama, Y., Hashimoto, J., Sakaguchi, K. Gene (2003) [Pubmed]
  34. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Lee, H.R., Zhang, W., Langdon, T., Jin, W., Yan, H., Cheng, Z., Jiang, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  35. Molecular cloning of the gene (SodCc1) that encodes a cytosolic copper/zinc-superoxide dismutase from rice (Oryza sativa L.). Sakamoto, A., Okumura, T., Kaminaka, H., Tanaka, K. Plant Physiol. (1995) [Pubmed]
  36. Spatial distribution of the 26S proteasome in meristematic tissues and primordia of rice (Oryza sativa L.). Yanagawa, Y., Kimura, S., Takase, T., Sakaguchi, K., Umeda, M., Komamine, A., Tanaka, K., Hashimoto, J., Sato, T., Nakagawa, H. Planta (2002) [Pubmed]
  37. A gibberellin-stimulated ubiquitin-conjugating enzyme gene is involved in alpha-amylase gene expression in rice aleurone. Chen, X., Wang, B., Wu, R. Plant Mol. Biol. (1995) [Pubmed]
  38. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Rae, A.L., Cybinski, D.H., Jarmey, J.M., Smith, F.W. Plant Mol. Biol. (2003) [Pubmed]
WikiGenes - Universities