The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lupinus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lupinus

  • Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov [1].
  • We isolated over 300 phytate (Na-inositol hexa-phosphate; Na-IHP)-utilizing bacterial strains from the rhizosheath and the rhizoplane of Lupinus albus (L.). Almost all of the isolates were classified as Burkholderia based on 16S rDNA sequence analysis [2].
  • Dissimilatory nitrate reductase from Bradyrhizobium sp. (Lupinus): subcellular location, catalytic properties, and characterization of the active enzyme forms [3].
  • 4. The utilization of lysine fro weight gain compared with free lysine was 0.86-0.88 for meat meals, 0.95-0.99 for soya-bean meal, 0.69-0.75 for cotton-seed meal, 0.90 for lupins (Lupinus augustifolius) and 0.99 for milk [4].
  • Mice that were given oral peanut showed only increase in peanut-specific IgG2a, but no IgE or IgG1 Abs and failed to develop anaphylactic reactions following injection of either peanut or lupine protein [5].
 

High impact information on Lupinus

  • After surface-sterilized lupine seeds were successfully inoculated with the recombinant strain, the engineered endophytic bacteria strongly degraded toluene, resulting in a marked decrease in its phytotoxicity, and a 50-70% reduction of its evapotranspiration through the leaves [6].
  • We identified two soybean genes encoding isoflavone synthase, and used them to isolate homologous genes from other leguminous species including red clover, white clover, hairy vetch, mung bean, alfalfa, lentil, snow pea, and lupine, as well as from the nonleguminous sugarbeet [7].
  • Beta-cyano-L-alanine synthase [L-cysteine hydrogen-sulfide-lyase (adding HCN), EC 4.4.1.9] was purified about 4000-fold from blue lupine seedlings [8].
  • These include the Cladrastis clade, the genistoids (including Lupinus), the mirbelioids, the dalbergioids (including Arachis), the millettioids (including Glycine and Phaseolus), and the hologalegina (galegoid) legumes, which comprise the robinioids (including Lotus) and the inverted repeat loss (IRL) clade (including Medicago and Pisum) [9].
  • In this investigation, we have for the first time used a genetically modified (GM) plant, narrow leaf lupin (Lupinus angustifolius L.), expressing a gene for a potential allergen (sunflower seed albumin) (SSA-lupin) to examine whether a GM plant/food-based vaccine strategy can be used to suppress the development of experimental asthma [10].
 

Chemical compound and disease context of Lupinus

 

Biological context of Lupinus

 

Anatomical context of Lupinus

 

Associations of Lupinus with chemical compounds

  • Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds [22].
  • A novel acyltransferase for alkaloid metabolism, tigloyl-CoA: (-)-13 alpha-hydroxymultiflorine/(+)-13 alpha-hydroxylupanine O-tigloyltransferase (HMT/HLTase), a monomeric 50-kDa protein, was purified to homogeneity from 10-day-old Lupinus termis seedlings [23].
  • The NIT4 homologs of N. tabacum were found to catalyze the same reactions and protein extracts of A. thaliana, N. tabacum and Lupinus angustifolius also converted Ala(CN) to Asp and Asn in vitro [24].
  • The reaction of Lupinus luteus tRNAPhe with 1 M chloroacetaldehyde in the pH range of 4 - 6 at 25 degrees C was studied [25].
  • Cloning and characterization of a cDNA encoding aspartate aminotransferase-P1 from Lupinus angustifolius root tips [26].
 

Gene context of Lupinus

  • The mitochondrial nad9 and nad6 genes were analyzed in four lupin species: Lupinus luteus, Lupinus angustifolius, Lupinus albus and Lupinus mutabilis [27].
  • The development of clustered tertiary lateral roots (proteoid roots) and the expression of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in roots were studied in white lupin (Lupinus albus L.) grown with either 1 mM P (+P-treated) or without P (-P-treated) [28].
  • Specificity and kinetic studies were performed with two aspartate aminotransferase isoenzymes (AAT-1 and AAT-2) from leaves of Lupinus albus L. cv Estoril using different amino donors and acceptors [29].
  • For the first time in plants, we have established the sequence of four yellow lupine mitotic cyclin B1 genes [30].
  • Specific IgEs were assayed for peanut, lupine flour, and pollen in 6 sera [13].
 

Analytical, diagnostic and therapeutic context of Lupinus

References

  1. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Trujillo, M.E., Willems, A., Abril, A., Planchuelo, A.M., Rivas, R., Ludeña, D., Mateos, P.F., Martínez-Molina, E., Velázquez, E. Appl. Environ. Microbiol. (2005) [Pubmed]
  2. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Unno, Y., Okubo, K., Wasaki, J., Shinano, T., Osaki, M. Environ. Microbiol. (2005) [Pubmed]
  3. Dissimilatory nitrate reductase from Bradyrhizobium sp. (Lupinus): subcellular location, catalytic properties, and characterization of the active enzyme forms. Polcyn, W., Luciński, R. Curr. Microbiol. (2006) [Pubmed]
  4. The utilization of lysine by young pigs from nine protein concentrates compared with free lysine in young pigs fed ad lib. Leibholz, J. Br. J. Nutr. (1986) [Pubmed]
  5. Peanut-lupine antibody cross-reactivity is not associated to cross-allergenicity in peanut-sensitized mouse strains. Lifrani, A., Dubarry, M., Rautureau, M., Aattouri, N., Boyaka, P.N., Tomé, D. Int. Immunopharmacol. (2005) [Pubmed]
  6. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J., van der Lelie, D. Nat. Biotechnol. (2004) [Pubmed]
  7. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Jung, W., Yu, O., Lau, S.M., O'Keefe, D.P., Odell, J., Fader, G., McGonigle, B. Nat. Biotechnol. (2000) [Pubmed]
  8. Beta-cyanoalanine synthase: purification and characterization. Akopyan, T.N., Braunstein, A.E., Goryachenkova, E.V. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  9. Legume comparative genomics: progress in phylogenetics and phylogenomics. Cronk, Q., Ojeda, I., Pennington, R.T. Curr. Opin. Plant Biol. (2006) [Pubmed]
  10. A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4+CD45RBlow T cell-dependent mechanism. Smart, V., Foster, P.S., Rothenberg, M.E., Higgins, T.J., Hogan, S.P. J. Immunol. (2003) [Pubmed]
  11. Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). Polcyn, W., Luciński, R. FEMS Microbiol. Lett. (2003) [Pubmed]
  12. The nucleotide sequences of two Lupinus luteus asparagine tRNAs. Barciszewska, M.Z., Jones, D.S. Nucleic Acids Res. (1988) [Pubmed]
  13. Cross-allergenicity of peanut and lupine: the risk of lupine allergy in patients allergic to peanuts. Moneret-Vautrin, D.A., Guérin, L., Kanny, G., Flabbee, J., Frémont, S., Morisset, M. J. Allergy Clin. Immunol. (1999) [Pubmed]
  14. Distinction between genotypes of Lupinus species by sodium dodecyl sulphate-gel electrophoresis and by capillary electrophoresis. Pollard, N.J., Wrigley, C.W., Bekes, F., Aumatell, A., MacRitchie, F. Electrophoresis (1996) [Pubmed]
  15. Cloning and characterization of a nodule-enhanced glutamine synthetase-encoding gene from Lupinus luteus. Boroń, L.J., Legocki, A.B. Gene (1993) [Pubmed]
  16. Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Attucci, S., Aitken, S.M., Gulick, P.J., Ibrahim, R.K. Arch. Biochem. Biophys. (1995) [Pubmed]
  17. A methionine tRNA gene from lupine mitochondria. Borsuk, P., Sirko, A., Bartnik, E. Nucleic Acids Res. (1986) [Pubmed]
  18. Cytokinin stimulates polyribosome loading of nuclear-encoded mRNAs for the plastid ATP synthase in etioplasts of Lupinus luteus: the complex accumulates in the inner-envelope membrane with the CF(1) moiety located towards the stromal space. Sherameti, I., Shahollari, B., Landsberger, M., Westermann, M., Cherepneva, G., Kusnetsov, V., Oelmüller, R. Plant J. (2004) [Pubmed]
  19. The role of intracerebral insulin in the effect of nutrition on gonadotrophin secretion in mature male sheep. Miller, D.W., Blache, D., Martin, G.B. J. Endocrinol. (1995) [Pubmed]
  20. Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Kusnetsov, V., Herrmann, R.G., Kulaeva, O.N., Oelmüller, R. Mol. Gen. Genet. (1998) [Pubmed]
  21. The role of exo-(1-->4)-beta-galactanase in the mobilization of polysaccharides from the cotyledon cell walls of Lupinus angustifolius following germination. Buckeridge, M.S., Hutcheon, I.S., Reid, J.S. Ann. Bot. (2005) [Pubmed]
  22. Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. Jakubowski, H., Guranowski, A. J. Biol. Chem. (1983) [Pubmed]
  23. A novel O-tigloyltransferase for alkaloid biosynthesis in plants. Purification, characterization, and distribution in Lupinus plants. Suzuki, H., Murakoshi, I., Saito, K. J. Biol. Chem. (1994) [Pubmed]
  24. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. Piotrowski, M., Schönfelder, S., Weiler, E.W. J. Biol. Chem. (2001) [Pubmed]
  25. The reaction of adenine and cytosine residues in tRNA with chloroacetaldehyde. Krzyzosiak, W.J., Biernat, J., Ciesiołka, J., Gulewicz, K., Wiewiórowski, M. Nucleic Acids Res. (1981) [Pubmed]
  26. Cloning and characterization of a cDNA encoding aspartate aminotransferase-P1 from Lupinus angustifolius root tips. Winefield, C.S., Reddington, B.D., Jones, W.T., Reynolds, P.H., Farnden, K.J. Plant Physiol. (1994) [Pubmed]
  27. Lupin nad9 and nad6 genes and their expression: 5' termini of the nad9 gene transcripts differentiate lupin species. Rurek, M., Nuc, K., Raczyńska, K.D., Augustyniak, H. Gene (2003) [Pubmed]
  28. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Johnson, J.F., Vance, C.P., Allan, D.L. Plant Physiol. (1996) [Pubmed]
  29. Effects of substrate structural analogues on the enzymatic activities of aspartate aminotransferase isoenzymes. Martins, L.L., Mourato, M.P., de Varennes, A. J. Enzym. Inhib. (2001) [Pubmed]
  30. Structure of yellow lupine genes coding for mitotic cyclins. Jeleńska, J., Zaborowska, Z., Legocki, A.B. Acta Biochim. Pol. (1999) [Pubmed]
  31. Adverse reaction to lupine-fortified pasta. Hefle, S.L., Lemanske, R.F., Bush, R.K. J. Allergy Clin. Immunol. (1994) [Pubmed]
  32. The plant aminoacyl-tRNA synthetases. Purification and characterization of valyl-tRNA, tryptophanyl-tRNA and seryl-tRNA synthetases from yellow-lupin seeds. Jukubowski, H., Pawelkiewicz, J. Eur. J. Biochem. (1975) [Pubmed]
  33. Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Naganowska, B., Wolko, B., Sliwińska, E., Kaczmarek, Z. Ann. Bot. (2003) [Pubmed]
  34. Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Bednarek, P., Frański, R., Kerhoas, L., Einhorn, J., Wojtaszek, P., Stobiecki, M. Phytochemistry (2001) [Pubmed]
 
WikiGenes - Universities