Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth.
The bifunctional N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) enzyme catalyzes both the acetylation of glucosamine 1-phosphate and the uridylation of N-acetylglucosamine 1-phosphate, two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis in bacteria. In our previous work describing its initial characterization in Escherichia coli, we proposed that the 456-amino acid (50.1 kDa) protein might possess separate uridyltransferase (N-terminal) and acetyltransferase (C-terminal) domains. In the present study, we confirm this hypothesis by expression of the two independently folding and functional domains. A fragment containing the N-terminal 331 amino acids (Tr331, 37.1 kDa) has uridyltransferase activity only, with steady-state kinetic parameters similar to the full-length protein. Further deletion of 80 amino acid residues at the C terminus results in a 250-amino acid fragment (28.6 kDa) still exhibiting significant uridyltransferase activity. Conversely, a fragment containing the 233 C-terminal amino acids (24.7 kDa) exhibits acetyltransferase activity exclusively. None of these individual domains could complement a chromosomal glmU mutation, indicating that each of the two activities is essential for cell viability. Analysis of truncated GlmU proteins by gel filtration further localizes regions of the protein involved in its trimeric organization. Interestingly, overproduction of the truncated Tr331 protein in a wild-type strain results in a rapid depletion of endogenous acetyltransferase activity, an arrest of peptidoglycan synthesis and cell lysis. It is shown that the acetyltransferase activity of the full-length protein is abolished once trapped within heterotrimers formed in presence of the truncated protein, suggesting that this enzyme activity absolutely requires a trimeric organization and that the catalytic site involves regions of contact between adjacent monomers. Data are discussed in connection with the recently obtained crystal structure of the truncated Tr331 protein.[1]References
- Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. Pompeo, F., Bourne, Y., van Heijenoort, J., Fassy, F., Mengin-Lecreulx, D. J. Biol. Chem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg