The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration.

Endonuclease V (Endo V) of Escherichia coli participates in the excision repair of hypoxanthine and xanthine (deaminated adenine and guanine) in DNA. It thereby reduces the mutagenic effects of nitrous acid by attacking lesions caused by nitrosative deamination. Nitrosating agents may be produced endogenously when E. coli is grown in oxygen-poor cultures, during which nitrate and nitrite replace oxygen as preferred electron acceptors. In this study, the protective effect of Endo V was observed under such conditions. During micro-aerobic growth, an nfi (Endo V) mutation enhanced the frequency of nitrate- and nitrite-induced A:T-->G:C and G:C-->A:T transition mutations, which are consistent with a defect in the removal of DNA hypoxanthine and xanthine, respectively. Similar effects were observed in saturated, aerobic cultures but not in well-aerated, logarithmically growing ones. A narG (nitrate reductase) mutation blocked the mutagenesis of the nfi mutant by nitrate but not by nitrite. These results differed from those of previous studies in which cell suspensions generated an exogenous nitrosating agent from nitrite, but not from nitrate, in a reaction that was narG-dependent. Nitrate/nitrite metabolism is also known to generate endogenous alkylating agents through N-nitrosation. However, an nfi mutation did not appreciably enhance mutagenesis by N-methyl-N-nitrosourea, suggesting that the mutator effect of nfi is not due to a defect in alkylation repair. The overall results indicate that Endo V functions during normal growth by helping to repair nitrosatively deaminated bases in DNA, which are by-products of anaerobic nitrate/nitrite respiration.[1]


WikiGenes - Universities