The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mutation analysis of subjects with 46, XX sex reversal and 46, XY gonadal dysgenesis does not support the involvement of SOX3 in testis determination.

Despite the identification of an increasing number of genes involved in sex determination and differentiation, no cause can be attributed to most cases of 46, XY gonadal dysgenesis, approximately 20% of 46, XX males and the majority of subjects with 46, XX true hermaphroditism. Perhaps the most interesting candidate for involvement in sexual development is SOX3, which belongs to the same family of proteins (SOX) as SRY and SOX9, both of which are involved in testis differentiation. As SOX3 is the most likely evolutionary precursor to SRY, it has been proposed that it has retained a role in testis differentiation. Therefore, we screened the coding region and the 5' and 3' flanking region of the SOX3 gene for mutations by means of single-stranded conformation polymorphism and heteroduplex analysis in eight subjects with 46, XX sex reversal (SRY negative) and 25 subjects with 46, XY gonadal dysgenesis. Although no mutations were identified, a nucleotide polymorphism (1056C/T) and a unique synonymous nucleotide change (1182A/C) were detected in a subject with 46, XY gonadal dysgenesis. The single nucleotide polymorphism had a heterozygosity rate of 5.1% (in a control population) and may prove useful for future X-inactivation studies. The absence of SOX3 mutations in these patients suggests that SOX3 is not a cause of abnormal male sexual development and might not be involved in testis differentiation.[1]

References

 
WikiGenes - Universities