The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs.

The reduced folate carrier (RFC1) is an important route by which the major blood folate, 5-methyltetrahydrofolate, is transported into mammalian cells. In this study we determined the consequences of inactivation of RFC1 in mice by homologous recombination. While RFC1-null embryos died in utero before embryonic day 9.5 (E9.5), near-normal development could be sustained in RFC1(-)/- embryos examined at E18.5 by supplementation of pregnant RFC1(+/-) dams with 1-mg daily subcutaneous doses of folic acid. About 10% of these animals went on to live birth but died within 12 days. These RFC1(-)/- mice showed a marked absence of erythropoiesis in bone marrow, spleen, and liver along with lymphoid depletion in the splenic white pulp and thymus. In addition, there was some impairment of renal and seminiferous tubule development. These data indicate that in the absence of RFC1 function, neonatal animals die due to failure of hematopoietic organs.[1]

References

  1. Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. Zhao, R., Russell, R.G., Wang, Y., Liu, L., Gao, F., Kneitz, B., Edelmann, W., Goldman, I.D. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities