The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Site-specific charge interactions of alpha-conotoxin MI with the nicotinic acetylcholine receptor.

We have tested the importance of charge interactions for alpha-conotoxin MI binding to the nicotinic acetylcholine receptor (AChR). Ionic residues on alpha-conotoxin MI were altered by site-directed mutagenesis or by chemical modification. In physiological buffer, removal of charges at the N terminus, His-5, and Lys-10 had small (2-4-fold) effects on binding affinity to the mouse muscle AChR and the Torpedo AChR. It was also demonstrated that conotoxin had no effect on the conformational equilibrium of either receptor, as assessed by the effects of the noncompetitive antagonist proadifen on conotoxin binding and, conversely, the effect of conotoxin on the affinity of phencyclidine, proadifen, and ethidium. Conotoxin displayed higher binding affinity in low ionic strength buffer; neutralization of Lys-10 and the N terminus by acetylation blocked this affinity shift at the alphadelta site but not at the alphagamma site. It is concluded that Ctx residues Lys-10 and the N terminal interact with oppositely charged receptor residues only at the alphadelta site, and the two sites have distinct arrangements of charged residues. Ethidium fluorescence experiments demonstrated that conotoxin is formally competitive with a small cholinergic ligand, tetramethylammonium. Thus, alpha-conotoxin MI appears to interact with the portion of the binding site responsible for stabilizing agonist cations but does not do so with a cationic residue and is, consequently, incapable of inducing a conformational change.[1]


  1. Site-specific charge interactions of alpha-conotoxin MI with the nicotinic acetylcholine receptor. Papineni, R.V., Sanchez, J.U., Baksi, K., Willcockson, I.U., Pedersen, S.E. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities